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MODELING AND SIMULATION OF PRESSURE, 
TEMPERATURE AND CONCENTRATION FOR  

THERMAL EXPLOSIONS 

OLIMPIA BUNTAa, MIHAELA-LIGIA UNGUREŞANb,*, 
VLAD MUREŞANc, OVIDIU STANc

ABSTRACT. In this paper is presented a simple possible model which can 
explain the thermal explosion problem, the existence of an induction period and 
a sudden rapid temperature rise. As state variables used for modeling are: 
the pressure, the temperature and the concentration. The time evolutions of 
these state parameters are analogically modeled using ordinary differential 
equations. The numerical simulations of the obtained model are made in 
Matlab/SimulinkTM. The validation of the model is realized by comparison 
between experimental data and simulation results, presenting a good accuracy. 

Keywords: thermal explosion, analogical modeling, numerical simulation, 
state Parameters 

INTRODUCTION 

Thermal explosions are events of high complexity which typically 
involve several processes from the fields of chemistry and physics, such as 
temperature rises [1], expansion, phase transition, chemical processes and 
reactions, and finally momentum transfer [2]. The analysis of an explosion 
phenomena may involve the description of the physical and chemical initial 
states of the material, its rate of heating, rate of decomposition kinetics [3], 
changes in the chemical and mechanical explosive properties, rate of 
burning, transfer rate of explosive energy into thermal and mechanical 
energy (hydrodynamics), and, finally, amount of damage (violence) [4,5]. 
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In a thermal explosive reaction, the rate of reaction rapidly varies with 
temperature and the moment of explosion takes place at some finite 
temperature [6,7].  

The value of the critical temperature, below which the thermal explosion 
of a chemical cannot occur, is indispensable to prevent such a chemical from 
exploding. To determine the critical temperature, it has so far been necessary 
to measure the value in explosion experiments [8].  

The problem of the critical regimes evaluation, perceived as separating 
regimes of the explosive regions and nonexplosive ways of the chemical 
reactions, is the most important mathematical aspect within the thermal 
explosion theory. Many authors, such as N. N. Semenov [9], D. A. Frank-
Kamenetsky [10], O. M. Todes and P. V. Melent’ev [11], A. G. Merzhanov 
and F. I. Dubovitsky [12], B. Grey [13], have investigated the critical 
phenomena of the thermal explosion theory. 

A solution for modelling the real phenomena, including, using 
fractional order differential equations (which can describe the mathematical 
models of the fractional order systems), is presented.[14] The fractional order 
models have the main advantage of generating a wider spectrum of possible 
approximations for the behaviour of the approached phenomena. This 
aspect implies the possibility to obtain more accurate models than using 
integer order models. However, the fractional order models have to main 
disadvantages: firstly, these types of models present more parameters than 
the integer order ones, fact that make the identification of the approached 
phenomena dynamics more difficult (the applied identification methods are 
based, mainly, on iterative algorithms); secondly, the numerical simulation of 
fractional order models involve complex problems (the necessity of their 
approximation using integer order models occurs, using, for example, the 
Oustoloup filter, but the resulted approximation have, in general, significantly 
high orders, their simulation becoming laborious), aspect which make difficult 
their usage in practice. 

Some interesting dependency functions between the parameters of 
the phenomenon of recombination of Oxygen and nitrogen atoms on quartz 
are presented in [15]. However, the proposed functions, describing static 
mathematical dependences, cannot be used for the accurate modelling of 
the explosion dynamics. In [16], a predictive modelled is used for the lower 
flammability limits of H2/O2/CO2 mixture in order to prevent the explosion.  

Examples of analytically determined mathematical models based on 
usage of ordinary differential equations and partial differential equations.[17] 
However, these models are valid for particular types of thermal explosions 
and, in the case when experimental data are available, their usage 
questionable. 
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In this paper, an original and general method for the modelling and 
simulation of the thermal explosions is presented. The numerical simulation 
method based on Taylor series generates high accuracy and it can be 
efficiently applied both if the considered thermal explosion is modelled as 
lumped parameter process or as distributed parameter model. In the case of 
modelling the explosions as lumped parameter models, the ordinary 
differential equations are use and in the case of modelling the explosions as 
distributed parameter models, the partial differential equations are used. The 
proposed method is efficient in the case when experimental data must be 
used in the modelling procedure. To prove the proposed method efficiency, 
the case of thermal explosion of oxyhydrogen gas initiated by the wall of a 
quartz reactor [18] is considered.  
 
 
RESULTS AND DISCUSSION 
 
Mathematical modeling 

It is a known fact that the usual linear processes can be expressed 
through the following analytical model: 

 
BuAxx +=      (1) 
DuCxy +=       (2) 

 
where: u = u(t), x = x(t) and y = y(t) represent the input, the state and the 
output vectors, and (A), (B), (C), and (D) correspond to the state, the input-
state, the state-output, and the input-output matrix. The matrices are 
constant if the process is time invariant and variable if the process varies in 
time. The initial conditions (IC), for t = t0, respectively xIC = x(t0) are known. 
In the hypothesis in which the known u = u(t) input vector presents a 
continuous evolution in relation to time, the solution in its vectorial form (1) 
of the ordinary differential equation (ode), respects the conditions of 
continuity of the Cauchy sense. 

 Taking into consideration a limited number of successive derivatives 
which consider the time variable for (1), respectively: 

 
BuAxx +=      (3) 

uBuBxAxAx  +++=     (4) 
uBuBuBxAxAxAx  +++++= 22      (5) 

uBuBuBuBxAxAxAxAx
....

 +++++++= 3333   (6) 
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 It can be observed that ( x ) in (4) derives from (3), ( x ) in (5) derives 
from (4), and finally ( x ) in (6) derives from (5), and so on, which simplifies 
the operation of progressive derivatives which regard the time variable of the 
state vector (x). 

The present paper proposes the method of the complete Taylor series 
for the numerical estimation of the (xk) vector: 

 

xx kk 1−≅ 
Δ+

ω

=1m

m

!m
t )(

1

m

kx −      (7) 
 

The right side of the equation is considered, at the tk-1 = (k-1).Δt moment, 
where (k-1) stands for the regressive sequence, and the sufficiently 
undersized (Δt), stands for the integration step. Therefore, the estimated 
solution at the tk = k.Δt moment, where (k) represents the current sequence, 
corresponds to: 
 

     x୩ ≅ x୩ିଵ + ∑ ∆୲୫ౣ! (A ∙ x(୩ିଵ)(୫ିଵ) + B ∙ u(୩ିଵ)(୫ିଵ)ன୫ୀଵ )            (8) 
 

where (ω) marks the maximum derivatives number with respect to the time 
variable, which limits the truncated evolution of the Taylor series, for the 
situation of the minimal ω ≥ 2 condition. Obviously:uk-1 = u(tk-1), xk-1 = x(tk-1), 
xk = x(tk), and u(୩ିଵ)(୫ିଵ) = ቂ ୢౣషభୢ୲ౣషభ (u)ቃ୩ିଵ, x(୩ିଵ)(୫ିଵ) = ቂ ୢౣషభୢ୲ౣషభ (x)ቃ୩ିଵ respectively 
with the remark that for m = 1, respectively (m - 1) = (0), correspond 

uu k

)(

k 1

0

1 −− =  and xx k

)(

k 1

0

1 −− = . 
 In order to ensure the starting of the calculation, at the initial t0 = tk-1, 
respectively k = 1 moments, the investigated initial conditions are expressed 
by using the (x0), state vector, to which the (u0) input vector is associated. 

The vector (xk) approximated at the tk = k.Δt moment, corresponds to:  

++++Δ++Δ+≅ −− 1k

2

1k1-kk )(
!2
t)(

!1
t uBuBxAxABuAxxx 

++++++Δ+ −1k

3

)22(
!3
t uBuBuBxAxAxA 

...)3333(
!4
t

1k

4

++++++++Δ+ −uBuBuBuBxAxAxAxA    (9) 

 
The ( )k-1 notation highlights the fact that the whole expression between the 
parenthesis is considered at the (k-1) sequence and at the tk-1 = (k-1).Δt 
moment. 
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For the considered process the time evolution of the three state 
parameters, respectively the pressure (Figure 1), the temperature (Figure 2) 
and the concentration (Figure 3) are approximated by the periodical 
exponential functions in the form: 

 

yAN (t) = ቀ1 − భ்భ்ି మ் 𝜀ି௧/ భ் − మ்మ்ି భ் 𝜀ି௧/ మ்ቁ ⋅ 𝐾 ⋅ 𝑢    (10) 
 

for the increasing evolutions in Figure 1 and 2, respectively in the form: 
 

yAN (t) = 1 2t / T t /T1 2

1 2 2 1

T T K u
T T T T

ε ε− − 
+ ⋅ ⋅ − − 

   (11) 

 

for the decreasing evolution in Figure 3. The input signal u0 = constant is 
considered to be the one to induce the explosion, and (K) represents a 
proportionality coefficient. 
 

 
Figure 1. The evolution of pressure 
 

 
Figure 2. The evolution of temperature 
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Figure 3. The evolution of concentration 

 
 
The two-time constants (T1) and (T2) are specific for each of the state 

parameters, respectively: 
T2 = λ. T1      (12) 

and the final tf = 10-5 time is approximated by: 

  tf = μ . (T1+ T2) = μ .(1 + λ). T1 = μ .(1 + 1
λ

). T2    (13) 

where μ=5 and λ=2 are considered. 
The point of inflexion of these curves results at the time: 

Ti = 1 2 1
f

2 1 2

T T T 1ln ln t
T T T 1

λμ λ
λ

  +⋅ = ⋅ ⋅ ⋅ − − 
    (14) 

so that the decrease of λ>1 restricts the progressive decrease of the inflexion 
moment (ti). 

The analogical model associated to functions (1) and (2) can be 
expressed using the ordinary differential equation: 

A0 . y + a1

2
2 0 0 1 1 2 2 02

dy d ya a y a y a y K u
dt dt

+ = + + = ⋅    (15) 

where a0 = 1; a1 = T1 + T2 and a2 = T1 . T2. 
The initial conditions considered at the t = t0 = 0 moment are: 
- for Figure 1: y0IC = 1; y1IC = 0; u0 = 1; 
- for Figure 2: y0IC = 272.96; y1IC = 0; u0 = 0.04; 
- for Figure 3: y0IC = 0; y1IC = 0; u0 = 0.03. 
This model stood at the base of the software elaborated in order to 

obtain the numerical simulation. 
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The numerical simulation  
Using the presented method, for the present application results the 

following algorithm: 
  y0 = y0I       (16) 

y1 = y1I        (17) 

( )2 0 0 0 1 1
2

1y Ku a y a y
a

 = − +     (18) 

( )3 1 0 1 1 2
2

1y Ku a y a y
a

 = − +     (19) 

( )4 2 0 2 1 3
2

1y Ku a y a y
a

 = − +     (20) 

( )5 3 0 3 1 4
2

1y Ku a y a y
a

 = − +     (21) 

where K = 1, u0 = 1; u1 = 0; u2 = 0 and u3 = 0. 
The above iterations continue with two Taylor Series, which will 

replace (16) and (17), respectively: 
2 3 4 5

0K 0 1 2 3 4 5
t t t t ty y y y y y y
1! 2! 3! 4! 5!
Δ Δ Δ Δ Δ= + + + + +    (22) 

and 
2 3 4

1K 1 2 3 4 5
t t t ty y y y y y
1! 2! 3! 4!
Δ Δ Δ Δ= + + + +     (23) 

where ∆t = tf/100 is the integration step. 
 
The indicator for this numerical integration performance is expressed 

by “the relative error cumulated in percentages” [19], denoted with: 
 

Crep y0 = 100 . 

f

f

K

0K
K 0
K

AN ,K
K 0

y

y

Δ
=

=




    (24) 

where K0=0, respectively Kf = tf/∆t are the initial and final sequences of 

calculation. The sums (
fK

AN,K
K 0

y
=
 ) result from (1) and (2) and: 
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fK

0K
K 0

yΔ
=
 = ( )

fK

0K 0AN ,K
K 0

y y
=

−    (25) 

 
The indicator (15) is established at each calculus iteration, and the    

(t = tf) final values are in the range of the (10-4) % order, which proves the 
remarkable accuracy of this numerical integration method. 
 

The above algorithm was implemented in MatlabTM software. The 
simulation results are presented in Table 1, successively grouped on Figures 
1, 2 and 3 for the time interval t0 = 0, up to tf = 10-5, with the extraction step of 
the results of ∆t = 10 .∆t = 10-6. 
 

Table 1. Simulation results of thermal explosion state variables 

t/s 10-7 1.1.10-6 2.1.10-6 3.10-6 4.10-6 5.10-6 
Pressure/(atm) 1.0052 1.3155 1.628 1.800 1.903 1.953 
Temperature (K) 272.960

2 
272.978

9 
272.985

2 
272.99

2 
272.996

1 
272.998

2 
Concentration 
(mol/l) 

0.03984 0.03053 0.02113 0.0159
9 

0.01291 0.01139 

Crep (%) 10-4 10-4 10-4 10-4 10-4 10-4 
 
t/s 6.10-6 7.10-6 8.1.10-6 9.1.10-6 10-5 

Pressure/(atm) 1.979 1.990 1.995 1.9978 1.9989 

Temperature (K) 272.9992 272.9996 272.9998 272.9999 273 

Concentration 
(mol/l) 

0.010615 0.0103 0.010137 0.010065 0.0100307 

Crep (%) 10-4 10-4 10-4 10-4 10-4 

 
The used parameters were: 

− the integration step ∆t = 10-9; 
− the calculus coefficients for the time constants: μ = 5; λ = 2; 
− the time constants: T1 = 6.67.10-7; T2=1.33.10-6; 
− the coefficients of the equation (15): a0 = 1; a = 2.10-6; a2 = 8.88.10-7; 
− crep y0 is of the order 10-4, which proves the remarkable performance 

of the numerical integration. 
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The inflexion moment (ti) in (14) can be changed in wide limits. For 
this particular study and using the corresponding software, it was obtained ti 
= 9.24.107, for a number of 1000 integration steps. 
 
 
Example: The thermal explosion of oxyhydrogen gas initiated by the 
wall of a quartz reactor 

The experimental data obtained during a thermal explosion of 
oxyhydrogen gas initiated by the wall of a quartz reactor are given. The 
experimental data are referring to the pressure variation and to the temperature 
variation during the explosion. The data associated to the pressure variation 
(the derivative of pressure in relation to time) are given in Table 2.  

 
Table 2. The pressure variation 

t 0 1 2 3 5 7 10 12 15 18 20 22 25 28 30 
dp
dt

 

[torr/s] 

0 0.2 0.5 0.8 1.4 1.8 2.6 2.7 2.8 2.7 2.1 1.9 1.4 1 0.8 

 
The experimental variation of the pressure in relation to time [dp/dt](t) 

is presented, also, in Figure 4. 

 
Figure 4. The [dp/dt](t) function 

 
Using the experimental data from Table 2, the pressure evolution p(t) 

in relation to time (over the initial condition), during the experiment, can be 
determined according to Table 3. 
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The pressure variation in relation to time
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Table 3. The pressure evolution in relation to time 
t 0 1 2 3 5 7 1

0 
1
2 

15 18 20 22 25 28 30 

dp t
dt

⋅ Δ
[torr] 

0 0.
2 

0.
7 

1.
5 

2.
9 

4.
7 

7.
3 

1
0 

12.
8 

15.
5 

17.
6 

19.
5 

20.
9 

21.
9 

22.
7 

 

In order to approximate the transformation of dp
dt

(t) in p(t), the graph-

analytical integration of the data from Table 2 is being applied, by using the 
following equation: 

p(t) 
=

≅ ⋅
14

i i
i 0

dp( t ) t
dt

Δ      (26) 

where (Δti) is the graph-analytical integration step, for i = 0, 1, 2, …14. Due 

to the fact that the curve in Figure 4 is referring to dp
dt

(t), the initial pressure 

(associated to the initial conditions) become null through differentiation. 
Knowing the initial pressure of p0 = 585 torr. the real pressure is given by: 
 

p1(t) = p0 + p(t)      (27) 
 

Consequently, p(t) represents an over-pressure in relation to p0. The 
p(t) evolution is presented in Figure 5 (using the data from Table 3).  

 

 
Figure 5. The p(t) evolution 
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The pressure evolution in relation to time
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According to Figure 4, the maximum value of [dp/dt](t) function is 
reached for t =15 s, aspect which implies the fact that the inflection point of 
the curve presented in Figure 5 (p(t)) is given by t = 15 s, too.  

The experimental data associated to the evolution of the temperature 
ΔT(t), over the initial temperature of T0 = 870 K and in relation to time, are 
presented in Table 4. 

 
Table 4. The temperature evolution in relation to time, over T0 

t [s] 0 13.25 14.4 14.9 15.01 15.05 15.1 15.16 15.21 

TΔ [K] 0 100 200 300 400 500 600 700 800 

 
Also, considering the initial temperature, too, the temperature evolution 

in relation to time is presented in Table 5. 
 

Table 5. The temperature evolution in relation to time 

t [s] 0 13.25 14.4 14.9 15.01 15.05 15.1 15.16 15.21 

T [K] 870 970 1070 1170 1270 1370 1470 1570 1670 

 
Using the data from Table 5, the temperature evolution is presented 

in Figure 6. 
 

 
Figure 6. The T(t) evolution 

 
In Figure 6, the explosion is highlighted around the moment t =15 s 
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OLIMPIA BUNTA, MIHAELA-LIGIA UNGUREŞAN, VLAD MUREŞAN, OVIDIU STAN 
 
 

 
100 

For modelling-simulation the thermal explosion of oxyhydrogen gas 
initiated by the wall of a quartz reactor, the proposed method is applied. The 
approximating analytical solutions for the p(t) and T(t) evolutions, are given by: 

- for the p(t) overpressure (in relation to the initial conditions): 
 y୮(t) = (1 − T୮ଵT୮ଵ − T୮ଶ ∙ eି ୲౦భ − T୮ଶT୮ଶ − T୮ଵ ∙ eି ୲౦మ) ∙ K୮ ∙ u୮(t) 
 

- for the T(t) temperature: 
 y(t) = T + (eି ୲భ + eି୲ି୲భమ )  ∙ u(t) 

 
In the first equation Tp1 = 8 s and Tp2 = 10 s are the time constants of 

the pressure dynamics, Kp = 26.8 torr/s is the proportionality constant of the 
pressure dynamics and up(t) is the input signal (this signal is a step unit signal 
which presents the commutation at the moment t0 = 0, it being introduced in 
the model the moment of finalizing the reactor preparation for the 
experiment).  

In the second equation TT1 = 2.89 s and TT2 = 0.298 s are the time 
constants of the temperature dynamics, T0 = 870 K is the initial temperature, 
uT(t) is the input signal having a similar form and modelling the same action 
as up(t), respectively t1 = 13.3 s is a delay constant.  

The mentioned structure parameters (the mentioned constants) 
values are identified using iterative identification algorithms based on 
processing the experimental data. 

The comparative graph between the experimental p(t) curve and the 
simulated one (obtained by applying the proposed simulation method) is 
presented in Figure 7.  

 

 
Figure 7. The comparative graph between the experimental p(t)  

evolution and the simulated one 
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The experimental evolution of p(t) function

The simulated evolution of p(t) function
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From Figure 7, the high efficiency of the proposed modelling-simulation 
method results through the good superposition of the simulated curve over 
the experimental one. The high precision is, also, proven through the 
insignificant value of the cumulated error in percentage computed for the 
simulated curve in relation to the experimental one: CREPP = 0.4903 % (error 
which in absolute values is proportional with 10-3 (4.903∙10-3).  

Also, based on using the proposed model for the p(t) dynamics in 
relation to time, the pressure variation [dp/dt](t) can be simulated. Hence, the 
comparative graph between the experimental pressure variation ([dp/dt](t)) 
curve and the simulated one (obtained by applying the proposed simulation 
method) is presented in Figure 8.  

 
Figure 8. The comparative graph between the experimental pressure variation 

[dp/dt](t) evolution and the simulated one 
 

The same conclusions as in the case of the comparison presented in 
Figure 7 result. The conclusions are proven through the insignificant value of 
the cumulated error in percentage computed for the simulated curve in 
relation to the experimental one: CREPDP = 0.6408 % (error which in absolute 
values is proportional with 10-3 (6.408∙10-3). 

 The comparative graph between the experimental T(t) curve and the 
simulated one (obtained by applying the proposed simulation method) is 
presented in Figure 9. As in the previous two simulations, the same 
conclusions result. In this case, too, the value of the cumulated error in 
percentage computed for the simulated curve in relation to the experimental 
one is an insignificant one: CREPT = 1.8478 % (error which in absolute 
values is proportional with 10-2 (1.8478 ∙10-3). The sensible higher value of 
CREPT than CREPP and CREPDP is due to the consistent higher absolute 
values of the temperature T(t) than the values of the other signals (p(t) and 

0 5 10 15 20 25 300

0.5

1

1.5

2

2.5

3

TIME [s]

[d
p/

dt
](t

) [
to

rr
/s]

 

 

The simulated [dp/dt](t) function (the pressure variation)

The experimental [dp/dt](t) function (the pressure variation)



OLIMPIA BUNTA, MIHAELA-LIGIA UNGUREŞAN, VLAD MUREŞAN, OVIDIU STAN 
 
 

 
102 

[dp/dt](t)). Practically, by descending scaling of the CREPT error with 100 (the 
approximate proportion between the mentioned values), in the case of the 
temperature modelling-simulation we have obtained even better results than 
in the cases of pressure, respectively of pressure variation.  
 

 
Figure 9. The comparative graph between the experimental temperature  

evolution and the simulated one 
 
 
CONCLUSIONS 

 
For certain cases, mathematical modeling is the only available 

predictive tool, and for other cases, mathematical modeling is one of the 
effective approaches. The usefulness of the results depends firstly on accuracy 
of mathematical model. 

The explosions are non-linear phenomena and the modeling 
procedures which can be applied for obtaining their mathematical model are 
complex ones. Also, the identification methods used for determining the 
structure parameters of non-linear processes are laborious due to the fact 
that they are complex extensions of the identification methods which can be 
applied in the case of linear processes. Considering these aspects, in many 
cases, when other possibilities are available, the direct modelling of non-
linear processes using non-linear models should be avoided. In this context, 
we have proposed a solution to solve and simplify the modelling of 
explosions by “avoiding of using a complex non-linear model. This solution 
is based on dividing the time period associated to the explosion in two 
intervals, the first interval corresponding to the increasing stage of the 
explosion (as intensity) and the second one corresponding to the decreasing 
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one. Practically, both stages can be modelled separately as linear processes, 
but the entire explosion phenomenon remains non-linear. More exactly, the 
explosion model is non-linear on the entire time period but is linear on 
intervals and we model separately each interval. In this paper, as study case, 
only the increasing stage of the approached explosions are modelled, but the 
decreasing stage modelling is similar as applied procedures. However, the 
proposed algorithm can be modified in order to have the possibility to apply 
it in order to model-simulate the explosion as a unitary non-linear 
phenomenon, but the associated computations are more complex: (1) has to 
be modified at the form x ̇=f(x,u) and (2) has to be modified at the form 
y=g(x,u), where both f and g functions are non-linear). 

For the studied process, the thermal explosion, it can be concluded 
that the algorithm presented by this research contributes to a high 
interpretation of the extremely short period of the explosion phenomena, 
analyzed from the perspective of pressure, temperature and concentration 
evolution in time, both in steady and transient states. The accuracy of the 
model is proved by the very small values of the relative error cumulated in 
percentages. 
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