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ABSTRACT. This paper assesses the efficiency of twelve spherical codes in 
CW EPR powder simulations. The spherical codes are either regular or are 
generated using optimisation methods. The EPR simulations are performed 
for spin systems with axial and rhombic symmetry. The spherical codes are 
compared using Voronoi tessellation-based homogeneity and EPR properties. 

 
Keywords: CW EPR powder simulations, spherical code, uniformity degree, 
EPR metrics 

 
 
 
 
INTRODUCTION  
 
 Continuous-wave electron paramagnetic resonance (CW EPR) powder 
simulations use spherical sets of points to approximate numerically the EPR 
spectrum. The quality of the EPR simulations depends both on the spherical 
codes' properties (size, uniformity degree) and the EPR characteristics of the 
spin system investigated (spin state, symmetry).  
 Previous assessments of the spherical codes for magnetic resonance 
simulations were based on the codes' homogeneity [1], the convergence rate 
of the simulations [2,3], and on EPR metrics [4]. The EPR metrics defined in [4] 
and some of the homogeneity metrics [4,5] depend on the spherical codes' 
Voronoi tessellation generated on the unit sphere.  
 This paper assesses the behaviour in CW EPR powder simulations and 
computes some homogeneity and EPR properties for the following spherical 
codes (the grids' abbreviations used in the paper are given in parentheses): 
Concentric map (CM) [6,7], HEALPix (HPX) [8,9], Cubed-sphere (CS) [10-13], 
Minimum Energy (ME) [14-16], Maximum Determinant (MD) [14,15,17], Symmetric 
Spherical grid (SS) [14,15,18], Icosahedral - covering arrangement (icover) [19], 
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Icosahedral - packing arrangement (ipack) [19], Icosahedral - maximal volume 
arrangement (ivol) [19], Hammersley (Ham) [20-24], Repulsion (Rep) [3,25], and 
Spherical Centroidal Voronoi Tessellation (SCVT) spherical code [26-29].  

 
 
 

 

Figure 1. The upper hemisphere and the Voronoi tessellation of the following 
spherical codes (the full sphere number of points is given in parentheses):  

CM (580), HPX (588), CS (602), ME (576), MD (576), SS (564), icover (572),  
ipack (582), ivol (572), Ham (578), Rep (578), and SCVT (578). 
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(a) Concentric map (CM) has been proposed for ray tracing 
applications in computer graphics, in order to maintain the adjacency and 
relative proportions when mapping patches from one surface to another [6,7]. 
First, CM maps square grids on disks, by transforming concentric squares 
of points into concentric circles of points [7]. Then, the points on the disk are 
uniformly projected onto the upper hemisphere [7]. The points on the lower 
hemisphere are obtained by mirror symmetry with respect to the xOy plane.  

(b) HEALPix (Hierarchical Equal Area isoLatitude Pixelization) was 
developed for astronomy applications involving fast processing of functions, 
such as spherical harmonic transforms, on spherical regions [8,9]. The HEALPix 
tessellation partitions the sphere in quadrilateral regions of equal areas, called 
pixels. The pixel centres (the grid nodes) are equally spaced on curves of 
constant latitude [8].  

(c) The original Cubed-sphere grid was introduced by Sadourny, in 
order to avoid the pole problems in the context of atmospheric motion numerical 
modelling [10]. The grid is obtained by projecting the six faces of a cube onto 
the circumscribed sphere. Different projection methods have been proposed, 
including the gnomonic [11] and conformal [12] mappings. This paper uses the 
gnomonic equiangular central projection, which yields a non-orthogonal cubed-
sphere grid with higher uniformity than other projections [13].  

(d-f) The Minimum Energy, Maximum Determinant, and Symmetric 
Spherical grids were computed by R. S. Womersley and I. H. Sloan for numerical 
integration on the sphere [14-18]. The Minimum Energy points were obtained by 
minimizing their Coulomb-type potential energy [14-16]. The Maximum Determinant 
(Extremal) points were computed by maximizing the determinant of an interpolation 
matrix, in the space of spherical polynomials [14,15,17]. The Symmetric (antipodal) 
Spherical code belongs to the category of spherical t-designs, having equal 
cubature weights for all points [14,15,18 ].  

(g-i) The Icosahedral arrangements of points were computed by R. H. 
Hardin, N. J. A. Sloane, and W. D. Smith [19]. The covering arrangement was 
obtained by minimizing the covering radius, that is the maximal distance from 
any point on the sphere to the closest grid point [19]. The packing arrangement 
was generated by maximizing the minimal distance between the grid points [19]. 
At its turn, the maximal volume arrangement was computed by maximizing 
the volume of the points' convex hull [19]. 

(j) The Hammersley spherical code, introduced in [20], is a deterministic 
low-discrepancy finite point set, based on radical inversion [21]. This point set 
has proved useful for quasi-Monte Carlo integration [21] and has been used, 
for example, in various applications in computer graphics [22]. The Hammersley 
point set on the unit sphere is obtained by projecting a two-dimensional 
Hammersley set, using a mapping such as Lambert cylindrical equal-area 
projection [22,23]. 
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(k) The Repulsion spherical code has been proposed for Nuclear 
Magnetic Resonance powder simulations [3,25]. This spherical code is generated 
iteratively by adjusting the positions of a set of equal electrical charges on the unit 
sphere. The charges repel each other by Coulomb forces and perform small 
movements on the sphere until the system reaches equilibrium [25]. At equilibrium, 
the potential energy of the charge system is minimal.  

(l) The SCVT grid belongs to the category of energy minimization 
spherical codes and uses the unit sphere Voronoi tessellation [26-29]. The grid 
is generated iteratively, the points' positions being adjusted until they coincide 
with the mass centres (centroids) of their corresponding Voronoi cells [26-29].  
 The original grids use different tessellations to partition the unit sphere in 
patches or cells. This paper uses the Voronoi tessellation for all spherical codes, 
in order to compute the weight corresponding to each grid point in EPR 
simulations. The Voronoi tessellations of the twelve spherical codes with about 
580 points are presented in Figure 1. 

 
 

RESULTS AND DISCUSSION 
 

1. CW EPR powder simulations 

 CW EPR powder spectra of the twelve spherical codes have been 
simulated as described in [4], for a spin system S = 1/2 characterised by 
electron Zeeman interaction with the static magnetic field. Two different 
symmetries of the gyromagnetic matrix g have been considered: one axial 
(C3), with the principal values (gx = 2.0, gy = 2.0, gz = 2.2), and one rhombic 
(C4), with (gx = 2.0, gy = 2.1, gz = 2.2). The two g-cases were denoted as in 
reference [4], to ease comparison with the results presented there. Pure axial 
spin systems do not require a spherical code, a quarter of a spherical meridian 
being sufficient for powder simulations [30]. Nevertheless, the axial case is 
considered here as an extreme case for nearly axial spin systems. EPR 
simulations have also been performed for the EasySpin grid [1] with a very high 
number of points. These simulations illustrate how the experimental spectra 
would look like for the spin system and symmetries considered in this paper. 
Based on the EPR simulations (Figures 2 and 3), we make the following 
observations: 

(a) In the axial case (C3), the Ham, Rep, ME, MD, ipack, and SCVT 
spherical codes generate simulated spectra with lower simulation noise than the 
other spherical codes. However, they do not behave better, for instance, than 
the Fibonacci grid presented in [4], which yields a nearly noise-free simulated 
spectrum in the (C3) g-case.   
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Figure 2. Simulated CW EPR powder spectra for (a-l) the twelve spherical codes  
with about 580 points and (m) the EasySpin spherical code with 9606 points,  

in the axial (C3) g-case.  
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Figure 3. Simulated CW EPR powder spectra for (a-l) the twelve spherical codes  
with about 580 points and (m) the EasySpin spherical code with 9606 points,  

in the rhombic (C4) g-case. 
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(b) In the rhombic case (C4), the MD, Rep, and SCVT spherical 
codes generate less noisy simulated EPR spectra then the other spherical 
codes. The spectra of these grids have similar quality with the Fibonacci grid's 
spectrum, but are noisier than the EasySpin grid's spectrum from [4]. 
 

2. Homogeneity properties 

 By Voronoi tessellation, each spherical code generates a structure of 
Voronoi cells on the unit sphere (Figure 1). If we take the mean distance, 
hmean(k), between any grid point Pk (k = 1,...,N) and the vertices of its Voronoi 
cell Vk, we obtain a measure of the grid's homogeneity [4,5].  
 Figure 4 presents the hmean distributions (the hmean(k) values for all grid 
points) for the twelve spherical codes discussed in this paper. The icover, ME, 
and Rep grids, followed by ivol, SCVT, and MD, have the hmean distributions with 
the smallest spread between the lower and upper whiskers of the boxplot 
representations. This means that most Voronoi cells of each of these spherical 
codes are geometrically similar.  
 

3. EPR properties 

 The two EPR metrics defined in [4] have been calculated for the 
spherical codes discussed here. The first metric, Bdev(k), is the deviation of the 
resonance magnetic field at the grid point Pk from the mean magnetic field of 
the corresponding Voronoi cell Vk [4]. The mean field of the Voronoi region is 
calculated by averaging the resonance magnetic fields at a set of randomly 
generated points inside this region. The second EPR metric, Bov,max(k), is the 
maximum overlapping degree between the resonance magnetic field intervals 
of the Voronoi cell Vk and its adjacent Voronoi cells [4]. This metric quantifies how 
much the EPR signals generated by adjacent Voronoi regions are overlapping.  
 The Bdev distributions of the grids are presented in Figure 5, for the (C3) 
and (C4) g-cases. In each case, most spherical codes have similar spread of 
data, excepting Ham and ipack with the highest range distributions. Compared 
to the previously investigated EasySpin grid [4], all twelve spherical codes have 
wider Bdev distributions and thus are less EPR homogeneous.  
 Unlike the Bdev metric, Bov,max (Figure 6, Table 1) differentiates better 
the grids in the axial (C3) g-case. In this case, the CM spherical code presents the 
highest maximum overlapping degree and behaves as the previously investigated 
Rectangular grid [4]. In the rhombic (C4) g-case, the twelve spherical codes 
behave similarly. 
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Figure 4. The hmean distributions for the spherical codes with about 580 points,  
in beanplot (left) and boxplot (right) representation. In the boxplots, the boxes  

cover the interquartile range and the whiskers extend to the most extreme data point, 
but not further than 1.5 times the interquartile range [34]. The full knots inside  

the beans and boxes are the data's mean values and the horizontal lines  
inside the boxes are the data's median values. 

 

 

Figure 5. The Bdev distributions for the spherical codes with about 580 points, in 
beanplot (left) and boxplot (right) representation: (a) (C3) g-case, (b) (C4) g-case.  
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Figure 6. The Bov,max distributions for the spherical codes with about 580 points, in 
beanplot (left) and boxplot (right) representation: (a) (C3) g-case, (b) (C4) g-case.  

 
Table 1. The mean and median values1 of the Bov,max distributions,  

in the axial (C3) and rhombic (C4) g-cases  
 

Grid (C3) (C4) 
CM 0.996  (1.000) 0.848  (0.840) 
HPX 0.869  (0.994) 0.841  (0.855) 
CS 0.866  (0.898) 0.844  (0.877) 
ME 0.855  (0.869) 0.847  (0.864) 
MD 0.830  (0.841) 0.827  (0.842) 
SS 0.914  (0.934) 0.836  (0.850) 

icover 0.836  (0.867) 0.865  (0.879) 
ipack 0.824  (0.840) 0.877  (0.920) 
ivol 0.835  (0.859) 0.867  (0.887) 

Ham 0.835  (0.837) 0.857  (0.864) 
Rep 0.838  (0.852) 0.842  (0.860) 

SCVT 0.828  (0.831) 0.839  (0.856) 

1The median values are given in parentheses. The reported values are the averages 
on three different sampling experiments of the grids, as described in [4]. Three 
variants of the Rep and SCVT grids have been used, each sampled once.   
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CONCLUSIONS 
 

This paper has compared twelve spherical codes regarding their 
behaviour in CW EPR powder simulations and their homogeneity and EPR 
properties. The grids' EPR simulations and metrics are only partially 
consistent. The grids with high geometric and EPR homogeneity do not always 
generate low-noise simulated EPR spectra. For example, the Repulsion, MD, 
and SCVT grids generate relatively low-noise simulated EPR spectra and 
present geometrically and EPR (regarding the Bdev metric) homogeneous Voronoi 
cells. The CM grid, at its turn, generates noisy EPR simulated spectra and has 
geometrically inhomogeneous and highly EPR-overlapping Voronoi regions. 
However, the Ham spherical code generates a relatively low-noise simulated EPR 
spectrum for an axial symmetry spin system, but has geometrically and EPR 
(Bdev) inhomogeneous Voronoi cells. 
 
 
COMPUTATIONAL DETAILS 
 
 The HEALPix spherical code was generated using the HEALPix 
(Hierarchical Equal Area isoLatitude Pixelation of the sphere) software 
(version 3.30, C language routines) [9]. The Minimum Energy (me23.0576) 
[16], Maximum Determinant (md023.00576) [17], and Symmetric Spherical 
(ss033.00564) [18] codes were computed by R. S. Womersley and I. H. 
Sloan. The Icosahedral arrangements of points (icover.3.572.7.1.txt, 
ipack.3.582.txt, and ivol.3.572.7.1.txt) were computed by R. H. 
Hardin, N. J. A. Sloane and W. D. Smith and made available at [19]. The 
Hammersley spherical code with base 2 was computed with the udpoint 
archive [24]. The Repulsion grids were generated as described in reference [31], 
using the repulsion.c program [25]. The SCVT grids were computed as 
described in [31], using the FORTRAN90 sphere_cvt library (sphere_cvt.f90, 
J. Burkardt) [29]. The Repulsion and SCVT spherical codes were generated 
in three variants. The Voronoi tessellations of the grids were computed using 
the STRIPACK package (R. J. Renka) [32], in the implementation available 
at [33] (stripack.f90, version 2007).  
 All CW EPR powder simulations used the microwave frequency ν = 9.5 
GHz and Gaussian lineshapes with the full width at half maximum of 3 mT. 
The cubature weight of each grid point to the simulation was approximated 
with the area of the corresponding Voronoi cell. The homogeneity and EPR 
metrics were computed as described in reference [4] and the figures were 
generated within R software environment [34].  
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