Dedicated to Professor Mircea Diudea on the Occasion of His $65^{\text {th }}$ Anniversary

TOPOLOGICAL INDICES IN HYPERTUBES OF HYPERCUBES

KHADIJEH FATHALIKHANI ${ }^{\text {a }}$, ATENA PÎRVAN-MOLDOVAN ${ }^{\text {b }}$, MIRCEA V. DIUDEA ${ }^{\text {b,* }}$

Abstract

A topological index is a single number descriptor that characterizes the molecular graph topology up to isomorphism. Hyper-tubes, open or closed, consisting of hyper-cubes of n-dimensions have been designed and formulas for some topological indices, counting vary substructures or characteristics, were established.

Keywords: graph, topological index, n-cube, hyper-tube, hyper-torus, n-dimensional space

INTRODUCTION

Schläfli [1] was the first scientist that described spaces of dimension higher than three, namely the six regular 4D-polytopes, also called polychora. These are as follows: 5 -Cell $\{3,3,3\} ; 8$-Cell $\{4,3,3\}$; 16-Cell $\{3,3,4\}$; 24 -Cell $\{3,4,3\} ; 120-$ Cell $\{5,3,3\}$ and $600-$ Cell $\{3,3,5\}$. Five of them can be associated to the Platonic solids but the sixth one, the 24 -cell has no a 3 D equivalent; it consists of 24 octahedral cells, 6 cells meeting at each vertex.Among the four dimensional polytopes, 5 -Cell and 24 -Cell are self-dual while the others are pairs: (8 -Cell \& 16 -Cell); (120 -Cell \& 600-Cell). In the above, $\{p, q, r\}$ are the Schläfli symbols: the symbol $\{p\}$ denotes a regular polygon for integer p, or a

[^0]star polygon for rational p; the symbol $\{p, q\}$ denotes a 3D-object tessellated by p-gons while q is the vertex-figure (i.e., the number of p-gons surrounding each vertex); the symbol $\{p, q, r\}$ describes a 4D-structure, in which $r 3 D$-objects join at any edge (r being the edge-figure) of the polytope, and so on. The Schläfli symbol has the nice property that its reversal gives the symbol of the dual polytope.

In dimensions 5 and higher, there are only three kinds of convex regular polytopes; no non-convex regular polytopes exist [2-4]. In the following, some details are given.

The n-simplex [2] has theSchläfli symbol $\left\{3^{n-1}\right\}$, and the number of its k-faces is given by the combinatorial formula $\binom{n+1}{k+1}$; it is a generalization of the triangle or tetrahedron to any dimensions.For example, a 0 -simplex is a point, a 1 -simplex is a line segment, a 2 -simplex is a triangle, a 3 -simplex is the tetrahedron, and a 4 -simplex is the 5 -cell.

The hypercube [2] is a generalization of the 3 -cube to n-dimensions and is also called an n-Cube Q_{n}. It is a regular polytope with mutually perpendicular sides, thus being an orthotope. Its Schläfli symbol is $\left\{4,3^{n-2}\right\}$ and k-facesare counted by the formula $2^{n-k}\binom{n}{k}$.The hypercube can also be expressed as the Cartesian product of the complete graph $K_{2}: Q_{n}=\square_{i=1}^{n} K_{2}$.

The n-orthoplex or cross-polytope [2] has the Schläfli symbol $\left\{3^{n-2}, 4\right\}$ and its k-faces are counted by the formula $2^{k+1}\binom{n}{k+1}$; it is the dual of Q_{n}, in any n-dimensions. The facets of a cross-polytope are simplexes of the previous dimensions, while its vertex figures are other cross-polytopes of lower dimensions.

To investigate an n-dimensional polytope, a formula, due to Euler [5] (see also Schläfli [1]) is used:

$$
\begin{equation*}
\sum_{i=0}^{n-1}(-1)^{i} f_{i}=1-(-1)^{n} \tag{1}
\end{equation*}
$$

For $n=3$, eq (1) reduces to the simpler (well-known) Euler relation

$$
\begin{equation*}
v-e+f=2(1-g) \tag{2}
\end{equation*}
$$

with v, e, f and g being the vertices, edges, 2-faces and the genus, respectively; $g=0$ for the sphere and $g=1$ for the torus.

It was conjectured by Diudea $[6,7]$ that the alternating sum for objects embedded in surfaces other than the sphere accounts for the genus of the embedding surface:

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} f_{k}=\chi(M)=2(1-g) ; n>1 ; k=0,1, . . n . \tag{3}
\end{equation*}
$$

It means that summation by (1) gives 2 and zero (for odd and even dimension, respectively) because the embedding surface was the sphere (see also (2)). In tori, with $g=1, x=0$ irrespective of the dimension of the embedded structure.

HYPERCUBES IN HIGH-DIMENSIONAL TUBULAR STRUCTURES

It is well-known [2] that the number of k-cubes $Q_{n}(k)$ contained in the hypercube Q_{n} can be calculated by

$$
\begin{equation*}
Q_{n}(k)=2^{n-k}\binom{n}{k} ; \quad k=0, . ., n-1 \tag{4}
\end{equation*}
$$

Hypercube (Figure 1) is isomorphic to the Hässe diagram of a finite Boolean algebra [2].

Figure 1. Hypercubes: the Tesseract or $\mathrm{Q}_{4} .16$ hypercube (left) and Q5. 32 hypercube (right).

Open Tubes

In a recent paper [8], Moldovan and Diudea proposed the embedding of n-Cube in surfaces other than the sphere (Figures 2 and 3).

Figure 2. A hyper-tube $T \mathrm{U}(4,5), \mathrm{Q}_{4} .40$ (left) and a hyper-tube

$$
\mathrm{TU}\left((4,8,5), \mathrm{Q}_{3} .80\right. \text { (right) }
$$

Figure 3. An elementary double-wall torus $\mathrm{T}\left((4,8), \mathrm{Q}_{4} .64\right.$, of square section (left) and $\mathrm{T}\left((4,9,12), \mathrm{Q}_{3} .216\right.$, with octagonal section and 16 units $\mathrm{T}\left((4,9,1), \mathrm{Q}_{3} .36\right.$ (right)

The k-dimensional substructures of a simple hyper-tube $\operatorname{TU}\left((4, r), \mathrm{Q}_{n}\right)$ (Figure 2, left) are counted from the hypercube $Q_{n}(k)$ substructures by formulas:

$$
\begin{align*}
f_{r}=(r / 2-1) / n \quad f_{k} & =(r / 2)+k \cdot f_{r} \quad k=0,1, . ., n-1 \tag{5}\\
T U\left((4, r), Q_{n}, k\right) & =Q_{n}(k) \cdot f_{k} ; \quad T U\left((4, r), Q_{n},(k+1)\right)=r
\end{align*}
$$

From Table 1, one can see that the alternation sum of figures (equaling the value of X) gives: zero for even dimension and 2 for the even dimension "Dim" of the hyper-tube. It means that the elementary hyper-tube $\operatorname{TU}\left((4, r), \mathrm{Q}_{\mathrm{n}},\right)$ is like the sphere (i.e., both having the genus $g=0$).

Table 1. Figure count in two hyper-tubes embedding hyper-cubes

Structure $\backslash k$	0	1	2	3	4	5	6	X	Dim
$\mathbf{T U}\left((4,5), Q_{5}\right) .80$	80	224	248	136	37	5	-	0	6
Q_{5}	32	80	80	40	10	0	-	2	5
f_{k}	2.5	2.8	3.1	3.4	3.7	4	-	-	-
$Q_{5} \times f_{k} \& r$	80	224	248	136	37	5	-	0	6
$\mathbf{T U}\left(\mathbf{4 , 5)}, \mathbf{Q}_{6}\right) .160$	160	528	720	520	210	45	5	2	7
Q_{6}	64	192	240	160	60	12	-	0	6
f_{k}	2.5	2.75	3	3.25	3.5	3.75	4	-	-
$Q_{6} \times f_{k} \& r$	160	528	720	520	210	45	5	2	7

In a more complex hyper-tube(Figure 2, right), each unit in the tube $\mathrm{TU}\left((4, r, s), \mathrm{Q}_{n}\right)$ is an elementary hyper-torus $\mathrm{T}\left((4, r), \mathrm{Q}_{n}\right)$ (Figure 3, left) while there are s-units along the tube.

The k-dimensional substructures of a complex hyper-tube TU((4,r,s), $\left.\mathrm{Q}_{n}\right)$ are counted from the previous dimensional substructures of the elementary hyper-torus $\mathrm{T}\left((4, r), \mathrm{Q}_{n}\right)$, by formulas:

$$
\begin{gather*}
\left.T U\left((4, r, 1), Q_{n}, k\right)\right)=T\left((4, r), Q_{n-1}, k\right)+T\left((4, r), Q_{n-1},(k-1)\right) \tag{6}\\
\left.T U\left((4, r, s), Q_{n}, k\right)=s \times T U\left((4, r, 1), Q_{n}, k\right)\right)+T\left((4, r), Q_{n-1}, k\right) ; \tag{7}\\
k=0,1, . ., n-1 ; n>3
\end{gather*}
$$

Table 2 gives details of the calculation of substructures in case of the hyper-tube $\operatorname{TU}\left((4,9,7), Q_{5}\right) \cdot 504$.Formulas work for any integer $n>3$.

Table 2. Figure countin the hyper-tubeTU((4,9,7), Q5). 504

Structure $\backslash k$	0	1	2	3	4	5	X	Dim
$\mathbf{T U}\left((4,9,7), Q_{5}\right) \cdot 504$	504	1692	2214	1413	441	54	0	6
$\mathrm{~T}\left((4,9), \mathrm{Q}_{4}\right) \cdot 72$	72	180	162	63	9	-	0	5
-	-	72	180	162	63	9	-	-
$\mathrm{TU}\left((4,9,1), \mathrm{Q}_{5}\right) \cdot 72$	72	252	342	225	72	9	0	6
$\mathrm{TU}\left((4,9,1), \mathrm{Q}_{5}\right) \times 6$	432	1512	2052	1350	432	54	-	-
$+\mathrm{T}\left((4,9), \mathrm{Q}_{4}\right) \cdot 72$	72	180	162	63	9	0	-	-
Sum	504	1692	2214	1413	441	54	0	6

Tori

When the end-faces of a hypertube are identified, it results in a closed hyper-tube or a hyper-torus (Figure 3). We studied particularly the tori $\mathrm{T}(4, r)$ and $\mathrm{T}(4, r, s)$, according to Diudea's discretization procedure [9].

The k-dimensional substructures of a simple hyper-torus $\mathrm{T}\left((4, r), \mathrm{Q}_{n}\right)$ (Figure 3, left) are counted on the basis of the hypercube $Q_{n}(k)$ substructures by the following formulas:

$$
\begin{array}{ccc}
f_{r}=(r / 2) / n & f_{k}=(r / 2)+k \cdot f_{r} & k=0,1, . ., n-1 \tag{8}\\
T\left((4, r), Q_{n}, k\right)=Q_{n}(k) \cdot f_{k} ; & T\left((4, r), Q_{n},(k+1)\right)=r
\end{array}
$$

Formulas can be easily verified from data listed in Table 3. The hypertorus $\mathrm{T}\left((4, r), \mathrm{Q}_{n}, k\right)$ is herein named "elementary" because it is a constituent of the more complex hyper-tubes and hyper-tori built up on the ground of hypercubes.

Table 3. Figure count for the hyper-torus $T\left((4,8), Q_{n}\right)$

Torus $\backslash k$	0	1	2	3	4	5	6	7	f_{r}	$\operatorname{Deg}(v)$	X
Q_{3}	8	12	6	0	0	0	0	0	0	3	2
Q_{4}	16	32	24	8	0	0	0	0	0	4	0
Q_{5}	32	80	80	40	10	0	0	0	0	5	2
Q_{6}	64	192	240	160	60	12	0	0	0	6	0
$\mathrm{Q}_{3} \mathrm{~T}_{4}$	32	64	40	8	0	0	0	0	$4 / 3$	4	0
$\mathrm{Q}_{4} \mathrm{~T}_{5}$	64	160	144	56	8	0	0	0	$4 / 4$	5	0
$\mathrm{Q}_{5} \mathrm{~T}_{6}$	128	384	448	256	72	8	0	0	$4 / 6$	6	0
$\mathrm{Q}_{6} \mathrm{~T}_{7}$	256	896	1280	960	400	88	8	0	$4 / 6$	7	0

The number of rings R around any point in the hyper-torus is given by formula

$$
\begin{equation*}
R\left(T\left((4, r), Q_{n}\right)\right)=4^{(n-1)(n+2) / 2} \tag{9}
\end{equation*}
$$

The vertex degree in the hyper-torus $\mathrm{T}\left((4, r), \mathrm{Q}_{n}\right)$ equals $(n+1)$. The torus is vertex transitive but its edges f_{1} and faces f_{2} are split in two equivalence classes.

In a more complex hyper-torus (see Figure 3, right); each unit $\mathrm{T}\left((4, r, 1), \mathrm{Q}_{n}\right)$ in the torus $\mathrm{T}\left((4, r, s), \mathrm{Q}_{n}\right)$ is an elementary hyper-torus $\mathrm{T}\left((4, r), \mathrm{Q}_{n}\right)$ while there are s units around the central hollow.

The k-faces of a hyper-torus $\mathrm{T}\left((4, r, s), \mathrm{Q}_{n}\right)$ are counted from the previous dimensional substructures of the elementary hyper-torus $T\left((4, r), Q_{n}\right)$, by formulas:

$$
\begin{align*}
& T\left((4, r, 1), Q_{n}, k\right)=T\left((4, r), Q_{n-1}, k\right)+T\left((4, r), Q_{n-1},(k-1)\right) \tag{10}\\
& T\left((4, r, s), Q_{n}, k\right)=s \times T\left((4, r, 1), Q_{n}, k\right) ; k=0,1, . ., n-1 ; n>3 \tag{11}
\end{align*}
$$

Details are given in Table 4; formulas work for any integer $n>3$.

Table 4. Figure count in the hyper-torus $T\left((4,8,16), Q_{7}\right) .4096$

| Structure $\backslash k$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | X |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~T}\left((4,8), \mathrm{Q}_{6}\right) \cdot 256$ | 256 | 896 | 1280 | 960 | 400 | 88 | 8 | 0 | 0 |
| | - | 256 | 896 | 1280 | 960 | 400 | 88 | 8 | - |
| $\mathrm{T}\left((4,8,1), \mathrm{Q}_{7}\right) \cdot 256$ | 256 | 1152 | 2176 | 2240 | 1360 | 488 | 96 | 8 | 0 |
| $\mathrm{~T}\left((4,8,16), \mathrm{Q}_{7}\right) .4096$ | 4096 | 18432 | 34816 | 35840 | 21760 | 7808 | 1536 | 128 | 0 |

The vertex degree in the hyper-torus $\mathrm{T}\left((4, r, s), \mathrm{Q}_{n}\right)$ equals $(n+2)$. This torus is vertex transitive but its edges f_{1} and faces f_{2} are split in three equivalence classes.

Note the difference between the hyper-cube and $\operatorname{TU}\left((4, r), Q_{n}\right)$ on one hand and the hyper-tube $\left.\mathrm{TU}(4, r, s), \mathrm{Q}_{n}\right)$, on the other hand: the figure sum gives alternating 0 and 2 for the hyper-cube, at even and odd n-dimension, respectively (Table 3), while the last structures provide zero, irrespective of n parity. This is because torus has the genus $g=1$ [10].

OMEGA POLYNOMIAL AND CI INDEX

A counting polynomial [11] is a representation of a graph $G(V, E)$, with the exponent a showing the extent of partitions $p(G), \cup p(G)=P(G)$ of a graph property $P(G)$ while the coefficient $p(a)$ is related to the number of partitions of extent a.

$$
\begin{equation*}
P(x)=\sum_{a} p(a) \cdot x^{a} \tag{12}
\end{equation*}
$$

Let G be a connected graph, with $V(G)$ and $E(G)$ being the vertex set and edge set, respectively. Two edges $e=(u, v)$ and $f=(x, y)$ of G are codistant (briefly: ecof) if they fulfill the relation [12]

$$
\begin{equation*}
d(v, x)=d(v, y)+1=d(u, x)+1=d(u, y) \tag{13}
\end{equation*}
$$

where d is the shortest-path distance function. The relation co is reflexive (ecoe) and symmetric ($e c o f$) for any edge e of G butis not necessarily transitive. A graph is called a co-graph if the relation co is also transitive and thus co is an equivalence relation.

Let $C(e):=\{f \in E(G) ; f$ co $e\}$ be the set of edges in G, codistant to $e \in E(G)$. The set $C(e)$ is provided by an orthogonal edge-cutting procedure: take a straight line segment, orthogonal to the edge e, and intersect it and all other edges (of a polygonal plane graph) parallel to e. The set of these intersections is called an orthogonal cut of G, with respect to e. If G is a cograph then its orthogonal cuts $C_{1}, C_{2}, \ldots, C_{k}$ form a partition of $E(G)$:

$$
\begin{equation*}
E(G)=C_{1} \cup C_{2} \cup \ldots \cup C_{k}, C_{i} \cap C_{j}=\varnothing, i \neq j \tag{14}
\end{equation*}
$$

A subgraph $H \subseteq G$ is called isometric if $d_{H}(u, v)=d_{G}(u, v)$, for any $(u, v) \in H$; it is convex if any shortest path in G between vertices of H belongs to H. The relation co is related to Djoković ~ [13] and Winkler Θ [14] relations (see also [15]).

Two edges e and f of a plane graph G are in relation opposite, e op f, if they are opposite edges of an inner face of G. Then e co f holds by the assumption that faces are isometric. The relation co is defined in the whole graph while op is defined only in faces/rings. Relation op will partition the edges set of G into opposite edge strips ops, as follows. (i) Any two subsequent edges of an ops are in op relation; (ii) Any three subsequent edges of such a strip belong to adjacent faces; (iii) In a plane graph, the inner dual of an ops is a path (however, in 3D networks, the ring/face interchanging will provide ops which are no more paths); (iv) The ops is taken as maximum possible, irrespective of the starting edge. The choice about the maximum size of face/ring, and the face/ring mode counting, will decide the length of the strip. Note that ops are qoc (quasi orthogonal cuts), meaning the transitivity relation is, in general, not obeyed.

The Omega polynomial $\Omega(x)$ [16-18] is defined on the ground of opposite edge strips ops $S_{1}, S_{2}, \ldots, S_{k}$ in the graph. Denoting by m the number of ops of cardinality/length $s=|S|$, we can write

$$
\begin{equation*}
\Omega(x)=\sum_{s} m \cdot x^{s} \tag{15}
\end{equation*}
$$

The first derivative (in $x=1$) can be taken as a graph invariant or a topological index:

$$
\begin{equation*}
\Omega^{\prime}(1)=\sum_{s} m \cdot s=|E(G)| \tag{16}
\end{equation*}
$$

An index, called Cluj-IImenau $C /(G)$ [12], was defined on $\Omega(x)$:

$$
\begin{equation*}
C I(G)=\left\{\left[\Omega^{\prime}(1)\right]^{2}-\left[\Omega^{\prime}(1)+\Omega^{\prime \prime}(1)\right]\right\} \tag{17}
\end{equation*}
$$

In tree graphs, the Omega polynomial counts the non-opposite edges, all being included in the term of exponent $s=1$. Omega polynomial was thought to describe the covering of polyhedral nano-structures or the tiling of crystallike lattices, as a complementary description of the crystallographic one.

In n-dimensional space, Omega polynomial could be useful in topological characterization of structures in which formulas for k-substructures are not known, the polynomial being more easily to count.

The following tables provide analytical formulas for the hyper-cubes (Tables 5 and 6), hyper-tubes (Tables 7 to 10) and hyper-tori (Tables 11 to 14) and numerical examples as well.

Table 5. Formulas for Omega polynomial in hyper-cubes Q_{n}

1	$\Omega\left(Q_{n}, x\right)=n \cdot x^{2^{n-1}}$
2	$\Omega^{\prime}(1)=e\left(Q_{n}\right)=\left\|E\left(Q_{n}\right)\right\|=n \cdot 2^{n-1}$
3	$\Omega^{\prime \prime}(1)=n \cdot 2^{n-1} \cdot\left(2^{(n-1)}-1\right)$
4	$C I\left(T\left((4, r), Q_{n}\right)\right)=n(n-1) \cdot 4^{n-1}$

Table 6. Omega polynomial in hyper-cubes Q_{n}; examples

Vertices	Edges	Q_{n}	$\operatorname{Deg}(v)$	Omega polynomial	CI
16	32	4	4	$4 X^{\wedge} 8$	768
32	80	5	5	$5 X^{\wedge} 16$	5120
64	192	6	6	$6 X^{\wedge} 32$	30720

Table 7. Formulas for Omega polynomial in hyper-tubes $\left((4, r), \mathrm{Q}_{n}\right)$
$1 \Omega\left(T U\left((4, r), Q_{n}\right), x\right)=(r-1) \cdot x^{4 \cdot 2^{n-3}}+(n-1) \cdot x^{2 r \cdot 2^{n-3}}$
$2 \Omega^{\prime}(1)=e\left(T U\left((4, r), Q_{n}\right)\right)=2^{n-3} \cdot(2 r+2 r n-4)$
$3 v\left(T U\left((4, r), Q_{n}\right)\right)=4 r \cdot 2^{n-3}$
$4 \Omega^{\prime \prime}(1)=2^{n-4}\left(4 r-4 \cdot 2^{n} \cdot r+4 \cdot 2^{n}+2^{n} \cdot r^{2}+4 n r-2^{n} \cdot n r^{2}-8\right)$
$5 C I\left(T U\left((4, r), Q_{n}\right)\right)=4^{n-2}\left(n^{2} r^{2}+n r^{2}-4 n r+2 r^{2}-8 r+8\right)$

Table 8. Omega polynomial in $\mathrm{TU}\left((4, r), \mathrm{Q}_{n}\right)$

Structure	Vertices	Edges	Q_{n}	Omega polynomial	Cl
TU(4,5)	20	36	3	$4 X^{\wedge} 4+2 X^{\wedge} 10$	1032
	40	92	4	$4 X^{\wedge} 8+3 X^{\wedge} 20$	7008
	80	224	5	$4 X^{\wedge} 16+4 X^{\wedge} 40$	42752
TU(4,6)	24	44	3	$5 X^{\wedge} 4+2 X^{\wedge} 12$	1568
	48	112	4	$5 X^{\wedge} 8+3 X^{\wedge} 24$	10496
	96	272	5	$5 X^{\wedge} 16+4 X^{\wedge} 48$	63488

Table 9. Formulas for Omega polynomial in hyper-tubes $\operatorname{TU}\left((4, r, s), \mathrm{Q}_{n}\right)$

1	$\Omega\left(T U\left((4, r, s), Q_{n}\right), x\right)=r \cdot x^{2 s \cdot 2^{n-3}}+(s-1) \cdot x^{2 r \cdot 2^{n-3}}+(n-2) \cdot x^{r s \cdot 2^{n-3}}$
2	$\Omega^{\prime}(1)=e\left(T U\left((4, r, s), Q_{n}\right)\right)=2^{n-3} \cdot(2 r s-2 r+n r s)$
3	$v\left(T U\left((4, r, s), Q_{n}\right)\right)=2 r s \cdot 2^{n-3}$
4	$\Omega^{\prime \prime}(1)=2^{n-6} \cdot r \cdot\left(16 s+4 \cdot 2^{n} \cdot r-4 \cdot 2^{n} \cdot s^{2}+8 \cdot n \cdot s+2 \cdot 2^{n} \cdot r \cdot s^{2}-4 \cdot 2^{n} \cdot r \cdot s-2^{n} \cdot n \cdot r \cdot s^{2}-16\right)$
5	$C I\left(T U\left((4, r, s), Q_{n}\right)\right)=4^{n-3} \cdot r \cdot\left(8 r+6 r \cdot s^{2}-4 s^{2}-12 r \cdot s+n^{2} \cdot r \cdot s^{2}-4 n \cdot r \cdot s+3 n \cdot r \cdot s^{2}\right)$

Table 10. Omega polynomial in $\mathrm{TU}\left((4, r, s), \mathrm{Q}_{n}\right)$

Structure	Vertices	Edges	Q_{n}	Omega polynomial	r	s	Cl
$\mathrm{TU}(5,5)$	50	115	3	$5 X^{\wedge} 10+4 \mathrm{X}^{\wedge} 10+1 \mathrm{X}^{\wedge} 25$	5	5	11700
	100	280	4	$5 X^{\wedge} 20+4 \mathrm{X}^{\wedge} 20+2 \mathrm{X}^{\wedge} 50$	5	5	69800
	200	660	5	$5 \mathrm{X}^{\wedge} 40+4 \mathrm{X}^{\wedge} 40+3 \mathrm{X}^{\wedge} 100$	5	5	391200
$\mathrm{TU}(9,7)$	126	297	3	$9 X^{\wedge} 14+6 \mathrm{X}^{\wedge} 18+1 \mathrm{X}^{\wedge} 63$	9	7	80532
	252	720	4	$9 X^{\wedge} 28+6 \mathrm{X}^{\wedge} 36+2 \mathrm{X}^{\wedge} 126$	9	7	471816
	504	1692	5	$9 \mathrm{X}^{\wedge} 56+6 \mathrm{X}^{\wedge} 72+3 \mathrm{X}^{\wedge} 252$	9	7	2613024

Table 11. Formulas for Omega polynomial in hyper-tori $\mathrm{T}\left((4, r), \mathrm{Q}_{n}\right.$

$$
\begin{array}{ll}
1 & \Omega\left(T\left((4, r), Q_{n}\right), x\right)=r \cdot x^{\left(2^{n-1}\right)}+(n-1) \cdot x^{\left(r \cdot 2^{n-2}\right)} \\
2 & \Omega^{\prime}(1)=e\left(T\left((4, r), Q_{n}\right)\right)=r(n+1) \cdot 2^{n-2} \\
3 & v\left(T\left((4, r), Q_{n}\right)\right)=r \cdot 2^{n-1} \\
4 & \Omega^{\prime \prime}(1)=(-) r \cdot 2^{n-4}\left(4 n+r \cdot 2^{n}-2^{n+2}-r \cdot n \cdot 2^{n}+4\right) \\
5 & C I\left(T\left((4, r), Q_{n}\right)\right)=r \cdot 4^{n-2}\left(r \cdot n^{2}+r \cdot n+2 r-4\right) \\
\hline
\end{array}
$$

Table 12. Omega polynomial in hyper-tori $\mathrm{T}\left((4, r), \mathrm{Q}_{n}\right)$; examples

Vertices	Edges	Q_{n}	Deg (v)	Omega polynomial	Cl
$\mathrm{T}(4,8)$					
32	64	3	4	$8 X^{\wedge} 4+2 \mathrm{X}^{\wedge} 16$	3456
64	160	4	5	$8 X^{\wedge} 8+3 \mathrm{X}^{\wedge} 32$	22016
128	384	5	6	$8 \mathrm{X}^{\wedge} 16+4 \mathrm{X}^{\wedge} 64$	129024
$\mathrm{~T}(4,9)$					
288	1008	6	7	$9 X^{\wedge} 32+5 X^{\wedge} 144$	903168
576	2304	7	8	$9 X^{\wedge} 64+6 \mathrm{X}^{\wedge} 288$	4773888
1152	5184	8	9	$9 X^{\wedge} 128+7 \mathrm{X}^{\wedge} 576$	24403968

Table 13. Formulas for Omega polynomial in hyper-tori $\mathrm{T}\left((4, r, s), \mathrm{Q}_{n}\right)$
$1 \Omega\left(T\left((4, r, s), Q_{n}\right), x\right)=s \cdot x^{r \cdot 2^{n-2}}+r \cdot x^{s \cdot 2^{n-2}}+(n-2) \cdot x^{r s \cdot 2^{n-3}}$
$2 \Omega^{\prime}(1)=e\left(T\left((4, r, s), Q_{n}\right)\right)=r s(n+2) \cdot 2^{n-3}$
$3 \quad v\left(T\left((4, r, s), Q_{n}\right)\right)=r s \cdot 2^{n-2}$
$4 \quad \Omega^{\prime \prime}(1)=(-) 2^{n-6} r s\left(8 n-2^{n+2} r-2^{n+2} s+2^{n+1} r s-2^{n} n r s+16\right)$
$5 C I\left(T\left((4, r, s) Q_{n}\right)\right)=2^{2(n-3)} r s\left(r s n^{2}+3 r s n-4 r-4 s+6 r s\right)$

Table 14. Omega polynomial in hyper-tori $\mathrm{T}\left((4, r, s), \mathrm{Q}_{n}\right)$; examples

Vertices	Edges	Q_{n}	Deg (v)	Omega polynomial	Cl
$\mathrm{T}(4,5,15)$					
150	375	3	5	$15 X^{\wedge} 10+5 X^{\wedge} 30+1 X^{\wedge} 75$	129000
300	900	4	6	$15 X^{\wedge} 20+5 X^{\wedge} 60+2 X^{\wedge} 150$	741000
600	2100	5	7	$15 X^{\wedge} 40+5 X^{\wedge} 120+3 X^{\wedge} 300$	4044000
$\mathrm{~T}(4,8,8)$					
128	320	3	5	$16 X^{\wedge} 16+1 X^{\wedge} 64$	94208
256	768	4	6	$16 X^{\wedge} 32+2 X^{\wedge} 128$	540672
512	1792	5	7	$16 X^{\wedge} 64+3 X^{\wedge} 256$	2949120

CLUJ POLYNOMIAL AND RELATERD INDICES

In bipartite graphs, the coefficients of CJ polynomial [19,20] can be calculated by an orthogonal edge-cut procedure [20,21]. In this respect, a more theoretical background is needed.

A graph G is a partial cube if it is embeddable in the hypercube $C(n)$. For any edge $e=(u, v)$ of a connected graph G let $n_{u v}$ denote the set of vertices lying closer to u than to $v: n_{u v}=\{w \in V(G) \mid d(w, u)<d(w, v)\}$. It follows that $n_{u v}=\{w \in V(G) \mid d(w, v)=d(w, u)+1\}$. The sets (and subgraphs) induced by these vertices, $n_{u v}$ and $n_{v u}$, are called semicubes of G; the semicubes are called opposite semicubes and are disjoint [22,23]. A graph G is bipartite if and only if, for any edge of G, the opposite semicubes define a partition of G : $n_{u v}+n_{v u}=v=|V(G)|$. These semicubes are just the vertex proximities of (the endpoints of) edge $e=(u, v)$, which $C J_{e}$ polynomial counts. In partial cubes, the semicubes can be estimated by an orthogonal edge-cutting procedure.

Function of the mathematic operation, three polynomials can be written with these semicubes:
(i) Cluj-Sum, symbolized CJS (obtained by summation) [24-26]:

$$
\begin{equation*}
C J S(x)=\sum_{e}\left(x^{v_{k}}+x^{v-v_{k}}\right) \tag{18}
\end{equation*}
$$

(ii) $P I_{v}$ (vertex, Padmakar-Ivan index [27]) polynomial (obtained by pairwise summation) [28-30]

$$
\begin{equation*}
P I_{v}(x)=\sum_{e} x^{v_{k}+\left(v-v_{k}\right)} \tag{1}
\end{equation*}
$$

(iii) Cluj-Product, symbolized CJP (obtained by pairwise product). [19,20,26,32]. It was also named Szeged polynomial SZv [29,30,33]:

$$
\begin{equation*}
C J P(x)=S Z_{v}(x)=\sum_{e} x^{v_{k}\left(v-v_{k}\right)} \tag{2}
\end{equation*}
$$

In hypercubes, the formulas for calculating the Cluj-related polynomials and derived topological indices (as the first derivative, in $x=1$) are given in Table 15 while examples are provided in Tables 16 to 18. Observe that the first derivative of CJs and PI_{v} are the same (Tables 16 and 17) but the second derivative (in $x=1$) is however, different.

Table 15. Formulas for Cluj and Plv_{v} polynomial in hyper-cubes

	Formulas
1	$v\left(Q_{n}\right)=\left\|V\left(Q_{n}\right)\right\|=2^{n} ; e\left(Q_{n}\right)=\left\|E\left(Q_{n}\right)\right\|=n \cdot 2^{n-1}$
2	$C J S\left(Q_{n}, x\right)=n(v / 2) x^{v / 2}+n(v / 2) x^{v / 2}=n\left(2^{n-1}\right) \cdot x^{2^{n-1}}+n\left(2^{n-1}\right) \cdot x^{2^{n-1}}=n \cdot 2^{n} \cdot x^{2^{n-1}}$
3	$C J S^{\prime}(1)=n \cdot 2^{2 n-1}$
4	$C J S^{\prime \prime}(1)=n \cdot 2^{2(n-1)} \cdot\left(2^{n}-2\right)$
5	$P I_{v}\left(Q_{n}, x\right)=e x^{v}=n \cdot 2^{n-1} \cdot x^{2^{n}}$
6	$P I_{v}^{\prime}(1)=n \cdot 2^{2 n-1}$
7	$P I_{v}{ }^{\prime \prime}(1)=n \cdot 2^{2 n-1} \cdot\left(2^{n}-1\right)$
8	$C J P\left(Q_{n}, x\right)=n(v / 2) x^{(v / 2)(v / 2)}=n \cdot 2^{n-1} \cdot x^{2^{2(n-1)}}$
9	$C J P^{\prime}(1)=n \cdot 2^{n-1} \cdot 2^{2(n-1)}=S Z_{v}$

Table 16. Cluj polynomial CJS in hypercube Q_{n}

$Q_{n}: \mathrm{n}$	CJS (x)	CJS'	CJS"
3	$12 x^{\wedge} 4+12 x^{\wedge} 4$	96	288
4	$32 x^{\wedge} 8+32 x^{\wedge} 8$	512	3584
5	$80 x^{\wedge} 16+80 x^{\wedge} 16$	2560	38400
6	$192 x^{\wedge} 32+192 x^{\wedge} 32$	12288	380928

Table 17. Plv polynomial in hypercube Q_{n}

$Q_{n}: \mathrm{n}$	$\operatorname{Plv}(\mathrm{x})$	Plv' $^{\prime}$	Plv"
3	$12 x^{\wedge} 8$	96	672
4	$32 x^{\wedge} 16$	512	7680
5	$80 x^{\wedge} 32$	2560	79360
6	$192 x^{\wedge} 64$	12288	774144

Table 18. Cluj polynomial CJP in hypercube Q_{n}

$Q_{n}: \mathrm{n}$	CJP (x)	CJP' $^{\prime}=$ SZ $_{v}$
3	$12 x^{\wedge}\left(4^{*} 4\right)$	192
4	$32 x^{\wedge}\left(8^{*} 8\right)$	2048
5	$80 x^{\wedge}\left(16^{*} 16\right)$	20480
6	$192 x^{\wedge}\left(32^{*} 32\right)$	196608

COMPUTATIONAL DETAILS

The design and properties of the studied structures was performed by our original Nano Studio [34] software program.

The numerical data resulted in calculation of polynomials and related topological indices appeared as integer sequences. To find the corresponding analytical formulas, we made use of OEIS, "The On-Line Encyclopedia of Integer Sequences" [35].

CONCLUSIONS

In this paper, several polynomials and the corresponding topological indices have been computed for tubular and toroidal hyper-structures made from hypercube units. Analytical formulas were established and numerical examples given.

REFERENCES

1. L. Schläfli, "Theorie der vielfachen Kontinuität Zürcher und Furrer", Zürich, 1901 (Reprinted in: Ludwig Schläfli, 1814-1895, "Gesammelte Mathematische Abhandlungen", Verlag Birkhäuser, Basel, 1950, Band 1).
2. http://en.wikipedia.org/wiki/Convex_hull; http://en.wikipedia.org/wiki/Simplex; http://en.wikipedia.org/wiki/Cross-polytope;
http://en.wikipedia.org/wiki/Hypercube. (accessed 12.05.2015)
3. H.S.M. Coxeter, "Regular Polytopes", 3rd ed. New York: Dover, 1973.
4. B. Grünbaum, "Convex Polytopes", Graduate Texts in Mathematics (2nd ed.), Springer, 2003.
5. L. Euler, Novi Comm. Acad. Scient. Imp. Petrop., 1758, 4, 109.
6. M.V. Diudea, "Multi-shell polyhedral clusters", Springer, 2016 (in preparation).
7. C.L. Nagy, M.V. Diudea, MATCH Commun. Math. Comput. Chem., 2016 (in press).
8. A. Parvan-Moldovan, M. V. Diudea, Iran. J. Math. Chem., 2015, 6, 163.
9. M.V. Diudea, Bull. Chem. Soc. Japan, 2002, 75, 487.
10. F. Harary, "Graph Theory", Addison-Wesley, Reading, MA, 1969.
11. M.V. Diudea, "Nanomolecules and Nanostructures - Polynomials and Indices", MCM, No. 10, Univ. Kragujevac, 2010.
12. P.E. John, A.E. Vizitiu, S. Cigher, M.V. Diudea, MATCH Commun. Math. Comput. Chem., 2007, 57, 479.
13. D.Ž. Djoković, Combin. J. Theory Ser. B, 1973, 14, 263.
14. P.M. Winkler, Discrete Appl. Math., 1984, 8, 209.
15. M.V. Diudea, S. Klavžar, Acta Chem. Sloven., 2010, $57,565$.
16. M.V. Diudea, Carpath. J. Math., 2006, 22, 43.
17. M.V. Diudea, S. Cigherand, P.E. John, MATCH, Commun. Math. Comput. Chem. 2008, 60, 237.
18. M.V. Diudea, S. Cigher and A.E. Vizitiu, M.S. Florescu, P.E. John, J. Math. Chem., 2009, 45, 316.
19. M.V. Diudea, in: Gutman I., Furtula B., (Eds) "Novel Molecular Structure DescriptorsTheory and Applications I", Univ Kragujevac, Kragujevac, 2010, 191.
20. M.V. Diudea in: Gutman I., Furtula B., (Eds) "Novel Molecular Structure DescriptorsTheory and Applications II", Univ Kragujevac, Kragujevac, 2010b, 57.
21. I. Gutman, S. Klavžar, J. Chem. Inf. Comput. Sci., 1995, 35, 1011.
22. M.V. Diudea, S. Cigher, P.E. John, MATCH Commun. Math. Comput. Chem., 2008, 60, 237.
23. M.V. Diudea, S. Klavžar, Acta Chem. Sloven., 2010, 57, 565.
24. M.V. Diudea, A.E. Vizitiu, D. Janežič, J. Chem. Inf. Model., 2007, 47, 864.
25. M.V. Diudea, J. Math. Chem., 2009, 45, 295.
26. M.V. Diudea, N. Dorosti, A. Iranmanesh, Carpath. J. Math., 2010, 4, 247.
27. P.V. Khadikar, Nat. Acad. Sci. Lett., 2000, 23, 113.
28. M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Discrete Appl. Math., 2008, 156, 1780.
29. A.R. Ashrafi, M. Ghorbani, M. Jalali, J. Theor. Comput. Chem., 2008, 7, 221.
30. T. Mansour, M. Schork, Discr. Appl. Math., 2009, 157, 1600.
31. M.V. Diudea, A. Ilić, M. Ghorbani, A.R. Ashrafi, Croat. Chem. Acta, 2010, 83, 283.
32. M.V. Diudea, J. Chem. Inf. Comput. Sci., 1997, 37, 300.
33. M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Linear Algebra Appl., 2008, 429, 2702.
34. C.L. Nagy, M.V. Diudea, NANO-Studio, Babes-Bolyai Univ., Cluj, 2009.
35. https://oeis.org/, The On-Line Encyclopedia of Integer Sequences" (accessed 12.05. 2015).

[^0]: ${ }^{\text {a }}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51167, I. R. Iran
 ${ }^{\text {b }}$ Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj, Romania

 * Corresponding Author: diudea@chem.ubbcluj.ro

