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ON (3,6) AND (4,6)FULLERENE CAYLEY GRAPHS 

ALI REZA ASHRAFIa, AMIR LOGHMANb,* AND MOJGAN MOGHARRABc 

ABSTRACT. An (r, s)fullerene graph is a planar 3regular graph with only 
Cr and Cs faces, where Cn denotes a cycle of length n. In this paper the 
(3,6)fullerene Cayley graphs constructed from finite groups are classified. A 
characterization of (4,6)fullerene Cayley graphs is also presented. 
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INTRODUCTION  

In this paper, the word graph refers to a finite, undirected graph without 
loops and multiple edges.  

Let G be a group and S a subset of G not containing the identity 
element. We define the Cayley digraph X = Cay(G,S) of G with respect to S 
by V(X) = G and E(X) = {(g,gs) | g  G, s  S}. It is not so difficult to prove that X 
is undirected if and only if S = S1 = {s1 | s  S}. In the latter case, we call X 
a Cayley graph. 

The notion of a map satisfies the originally intuitive problem of “drawing 
a graph without intersections”. Let us denote the group of all mapautomorphism 
of M by Aut(M). If Aut(M) contains a subgroup that acts regularly on the vertex 
set then M is called a Cayley map. Since Aut(M)  Aut(X) we clearly have 
that the underlying graph X of a Cayley map is a Cayley graph. Equivalently, 
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a Cayley map is an embedding of a Cayley graph onto an oriented surface 
having the same cyclic rotation of generators around each vertex. These are 
studied extensively in literature, see [13] for more details on this subject. 

A graph which can be drawn in the plane in such a way that edges meet 
only at points corresponding to their common ends is called a planar graph. An 
(r,s)fullerene graph is a planar 3regular graph with only r and sfaces, where 
an nface is a face of size n. Suppose p, h, n and m are the number of rfaces, 
sfaces, vertices and edges, respectively, in a given (r,s)fullerene, where 
(r,s) = (3,6);(4,6). Since each vertex in an (r,s)fullerene graph lies in exactly 
3 faces and each edge lies in 2 faces, the number of vertices is n = (rp + sh)/3, 
the number of edges is m = (3/2)n = (rp + sh)/2 and the number of faces is 
f = p + h. By the Euler's formula n  m + f = 2, one can deduce that (rp + sh)/3  
(rp + sh)/2 + p + h = 2, and therefore the number of 3faces in (3,6)fullerenes 
is four while the number of 4faces in (4,6)fullerenes is six. This implies that 
(3,6)fullerenes have exactly four triangles and n/2  2 hexagons. Similarly, 
(4,6)fullerenes have exactly 6 squares and n/2 – 4 hexagons. The 
(4,6)fullerenes with isolated squares are called ISRfullerenes. The name 
is taken from [4] in which the authors used the name IPRfullerene for those 
with disjoint pentagons. 

Computations were carried out by the aid of GAP [5]. The motivation 
for this study is outlined in [3,68] and the reader is encouraged to consult these 
papers for background material as well as for basic computational techniques. 
Our notation is standard and taken mainly from [4]. 

RESULTS AND DISCUSSION 

Since the discovery of C60 fullerene in 1985 by Kroto et al., the 
fullerenes became the subject of interest of scientists all over the world [9,10]. 
The aim of this section is to characterize the (3,6) and (4,6)fullerene Cayley 
graphs [11]. We begin by (3,6)fullerene Cayley graphs. 

Theorem 1. Let X = Cay(G,S) be a (3,6)fullerene Cayley graph on a 
group G. Then, either G is isomorphic to an abelian group of order 4 and X is 
isomorphic to the complete graph K4, or G is isomorphic to the alternating 
group A4 and X is isomorphic to the graph shown in Figure 1. 

Proof. By Euler's formula X contains a 3cycle. Since X is cubic and 
undirected, then S is of cardinality 3 and S=S-1. If S consists of three involutions 
a, b and c then a 3cycle in X must arise from the relation abc = e, which implies 
that c = ab and consequently G = a, b, c = a, b | a2 = b2 = (ab)2 = e  Z2  Z2 
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and X  K4. If however S consists of an involution a, a noninvolution x and 
the inverse of this noninvolution then a 3cycle in X arises either from the 
relation x3 = e or from the relation x2a = e. In the former case the edge with 
end vertices e and x must lie on a 6cycle arising from the relation (ax)3 = e 
and thus G = a, x | a2 = x3 = (ax)3 = e  A4 and X is isomorphic to the graph 
shown in Figure 1. In the latter case G = x | x4=e  Z4 and XK4. This 
completes our proof. 

Figure 1. The (3,6)fullerene Cayley graph on the alternating group A4. 

Theorem 2. Let X = Cay(G,S) be a (4,6)fullerene Cayley graph on 
group G.  

Then 
I. G is isomorphic to the dihedral group D8 or Z2  Z4 with a Cayley 

graph isomorphic to the cube Q3, 
II. G is a finite quotient of an infinite group H presented as follows:

H = a, b, c | a2 = b2 = c2 = e, (ab)2 = e , 

III. G is a finite quotient of the free product group Z2  Z2,
IV. G is isomorphic to the symmetric group S4 with a Cayley graph

isomorphic to an ISRfullerene on 24 vertices depicted in Figure 2, 
V. G is isomorphic to the dihedral group D12 with a Cayley graph 

isomorphic to a 6prism depicted in Figure 3, 
VI. G is a finite quotient of an infinite group H isomorphic to an

extension of Z2Z2 by Z2. 

Proof. Suppose X = Cay(G,S) is a (4,6)fullerene. Since X is 
3regular, we can assume that S = {a, b, c}. By similar argument as Theorem 
1, we consider the following cases: 
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Case 1. a2 = b2 = c2 = e. A tedious calculation shows that we can 
assume that the 4face of X arise from (ab)2 = e or abac = e. If (ab)2 = e then 
ab = ba and G has the following presentation: 

G = a, b, c | a2 = b2 = c2 = e, (ab)2 = e. 

We now compute the abelian invariants of G and G as follows: 

.
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,
' 222

ZZZ
G
G

andZZZ
G
G





Therefore, G is infinite, as desired. If abac = e then aba = c and so 

G = a, b, c | a2 = b2 = c2 = e, aba = c 
= a, b | a2 = b2 = e   Z2  Z2, 

Where Z2  Z2 denotes the free product of Z2 by Z2, which is an 
infinite group. 

Case 2. a2 = b4 = e and c = b1. In this case, b2 = c2 and by existence 
of a face of length 4, (ab)2 = e or aba = b. If (ab)2 = e then G has the following 
presentation: 

G = a, b | a2 = b4 = e, (ab)2 = e   D8. 

Therefore, the Cayley graph X on G is isomorphic to the cube Q3. If 
aba = b then G has the following presentation: 

G = a, b | a2 = b4 = e, ab = ba   Z2  Z4, 

and X is isomorphic to Q3.  
Suppose that the 4faces in X arise only from the relation b4=e. We 

now consider combinations of generators of length 6. Then (ab)3 = e, or 
ab3ab=e, or (ab)2 = e or (ab2)2 = e. If ab = ba then G is abelian and so it is 
isomorphic to Z2  Z4 and X = Cay(G,S)  Q3. If (ab)3 = e then G is presented 
by a, b | a2 = b4 = (ab)3 = e. It is wellknown that this group is isomorphic to 
the symmetric group on four symbols, S4. A simple GAP program [5] shows 
that the Cayley graph of G is the following ISR (4,6)fullerene of Figure 2.  
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Figure 2. An ISR-Fullerene on 24 vertices. 

If (ab)2 = e then G = a, b | a2 = b4 = (ab)2 = e  D8 and X  Q3. Finally, if 
(ab2)2 = e then b2  Z(G). Consider the factor group G/<b2>. Then a simple 
calculation shows that this group can be presented by a, b | a2 = b2 = e  Z2Z2.  

Case 3. a2 = b6 = e and c = b1. In this case using a similar argument 
as those given in Cases 1 and 2, one can see that (ab)2 = e and so G can be 
presented as follows: 

G = a, b | a2 = b6 = (ab)2 = e  D12, 

giving the 6fold prism as its Cayley graph, Figure 3. This completes our 
argument.  

Figure 3. The 6-Prism Graph. 
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