Dedicated to Professor Mircea Diudea on the Occasion of His 65th Anniversary

ON (3,6) AND (4,6)-FULLERENE CAYLEY GRAPHS

ALI REZA ASHRAFI^a, AMIR LOGHMAN^{b,*} AND MOJGAN MOGHARRAB^c

ABSTRACT. An (r, s)–fullerene graph is a planar 3–regular graph with only C_r and C_s faces, where C_n denotes a cycle of length n. In this paper the (3,6)–fullerene Cayley graphs constructed from finite groups are classified. A characterization of (4,6)–fullerene Cayley graphs is also presented.

Keywords: Fullerene, Cayley graph, finite group.

INTRODUCTION

In this paper, the word graph refers to a finite, undirected graph without loops and multiple edges.

Let G be a group and S a subset of G not containing the identity element. We define the Cayley digraph X = Cay(G,S) of G with respect to S by V(X) = G and E(X) = {(g,gs) | $g \in G, s \in S$ }. It is not so difficult to prove that X is undirected if and only if S = S⁻¹ = {s⁻¹ | $s \in S$ }. In the latter case, we call X a Cayley graph.

The notion of a map satisfies the originally intuitive problem of "drawing a graph without intersections". Let us denote the group of all map–automorphism of M by Aut(M). If Aut(M) contains a subgroup that acts regularly on the vertex set then M is called a Cayley map. Since $Aut(M) \le Aut(X)$ we clearly have that the underlying graph X of a Cayley map is a Cayley graph. Equivalently,

^a Department of Mathematics, Statistics and Computer Science, Faculty of Science, University of Kashan, Kashan 87317-51167, I. R. Iran; Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-53153, I. R. Iran

^b Department of Mathematics, Payame Noor University, PO BOX 19395-3697 Tehran, Iran

[°] Department of Mathematics, Persian Gulf University, Bushehr, I. R. Iran

^{*} Corresponding Author: amirloghman@pnu.ac.ir

a Cayley map is an embedding of a Cayley graph onto an oriented surface having the same cyclic rotation of generators around each vertex. These are studied extensively in literature, see [1–3] for more details on this subject.

A graph which can be drawn in the plane in such a way that edges meet only at points corresponding to their common ends is called a planar graph. An (r,s)-fullerene graph is a planar 3-regular graph with only r- and s-faces, where an n-face is a face of size n. Suppose p, h, n and m are the number of r-faces, s-faces, vertices and edges, respectively, in a given (r.s)-fullerene, where (r,s) = (3,6);(4,6). Since each vertex in an (r,s)-fullerene graph lies in exactly 3 faces and each edge lies in 2 faces, the number of vertices is n = (rp + sh)/3, the number of edges is m = (3/2)n = (rp + sh)/2 and the number of faces is f = p + h. By the Euler's formula n - m + f = 2, one can deduce that (rp + sh)/3 - h(rp + sh)/2 + p + h = 2, and therefore the number of 3-faces in (3.6)-fullerenes is four while the number of 4-faces in (4,6)-fullerenes is six. This implies that (3,6)-fullerenes have exactly four triangles and n/2 - 2 hexagons. Similarly, (4,6)-fullerenes have exactly 6 squares and n/2 - 4 hexagons. The (4,6)-fullerenes with isolated squares are called ISR-fullerenes. The name is taken from [4] in which the authors used the name IPR-fullerene for those with disjoint pentagons.

Computations were carried out by the aid of GAP [5]. The motivation for this study is outlined in [3,6–8] and the reader is encouraged to consult these papers for background material as well as for basic computational techniques. Our notation is standard and taken mainly from [4].

RESULTS AND DISCUSSION

Since the discovery of C_{60} fullerene in 1985 by Kroto *et al.*, the fullerenes became the subject of interest of scientists all over the world [9,10]. The aim of this section is to characterize the (3,6)– and (4,6)–fullerene Cayley graphs [11]. We begin by (3,6)–fullerene Cayley graphs.

Theorem 1. Let X = Cay(G,S) be a (3,6)–fullerene Cayley graph on a group G. Then, either G is isomorphic to an abelian group of order 4 and X is isomorphic to the complete graph K₄, or G is isomorphic to the alternating group A₄ and X is isomorphic to the graph shown in Figure 1.

Proof. By Euler's formula X contains a 3–cycle. Since X is cubic and undirected, then S is of cardinality 3 and S=S⁻¹. If S consists of three involutions a, b and c then a 3–cycle in X must arise from the relation abc = e, which implies that c = ab and consequently G = $\langle a, b, c \rangle = \langle a, b | a^2 = b^2 = (ab)^2 = e \rangle \cong Z_2 \times Z_2$

and X \cong K₄. If however S consists of an involution a, a non–involution x and the inverse of this non–involution then a 3–cycle in X arises either from the relation x³ = e or from the relation x²a = e. In the former case the edge with end vertices e and x must lie on a 6–cycle arising from the relation (ax)³ = e and thus G = $\langle a, x | a^2 = x^3 = (ax)^3 = e \rangle \cong A_4$ and X is isomorphic to the graph shown in Figure 1. In the latter case G = $\langle x | x^4 = e \rangle \cong Z_4$ and X \cong K₄. This completes our proof.

Figure 1. The (3,6)–fullerene Cayley graph on the alternating group A₄.

Theorem 2. Let X = Cay(G,S) be a (4,6)–fullerene Cayley graph on group G.

Then

I. G is isomorphic to the dihedral group D_8 or $Z_2\times Z_4$ with a Cayley graph isomorphic to the cube $Q_3,$

II. G is a finite quotient of an infinite group H presented as follows:

$$H = \langle a, b, c | a^2 = b^2 = c^2 = e, (ab)^2 = e \rangle,$$

III. G is a finite quotient of the free product group $Z_2 \blacklozenge Z_2$,

IV. G is isomorphic to the symmetric group S₄ with a Cayley graph isomorphic to an ISR–fullerene on 24 vertices depicted in Figure 2,

V. G is isomorphic to the dihedral group D_{12} with a Cayley graph isomorphic to a 6–prism depicted in Figure 3,

VI. G is a finite quotient of an infinite group H isomorphic to an extension of $Z_2 \times Z_2$ by Z_2 .

Proof. Suppose X = Cay(G,S) is a (4,6)–fullerene. Since X is 3–regular, we can assume that $S = \{a, b, c\}$. By similar argument as Theorem 1, we consider the following cases:

Case 1. $a^2 = b^2 = c^2 = e$. A tedious calculation shows that we can assume that the 4–face of X arise from $(ab)^2 = e$ or abac = e. If $(ab)^2 = e$ then ab = ba and G has the following presentation:

 $G = \langle a, b, c | a^2 = b^2 = c^2 = e, (ab)^2 = e \rangle.$

We now compute the abelian invariants of G and G' as follows:

$$\frac{G}{G'} \cong Z_2 \times Z_2 \times Z_2, \text{ and}$$
$$\frac{G'}{G''} \cong Z \times Z \times Z.$$

Therefore, G is infinite, as desired. If abac = e then aba = c and so

$$G = \langle a, b, c | a^2 = b^2 = c^2 = e, aba = c \rangle$$
$$= \langle a, b | a^2 = b^2 = e \rangle \cong Z_2 \blacklozenge Z_2,$$

Where $Z_2 \blacklozenge Z_2$ denotes the free product of Z_2 by Z_2 , which is an infinite group.

Case 2. $a^2 = b^4 = e$ and $c = b^{-1}$. In this case, $b^2 = c^2$ and by existence of a face of length 4, $(ab)^2 = e$ or aba = b. If $(ab)^2 = e$ then G has the following presentation:

$$G = \langle a, b | a^2 = b^4 = e, (ab)^2 = e \rangle \cong D_8.$$

Therefore, the Cayley graph X on G is isomorphic to the cube Q_3 . If aba = b then G has the following presentation:

G =
$$\langle a, b | a^2 = b^4 = e, ab = ba \rangle \cong Z_2 \times Z_4$$
,

and X is isomorphic to Q_3 .

Suppose that the 4–faces in X arise only from the relation b⁴=e. We now consider combinations of generators of length 6. Then $(ab)^3 = e$, or $ab^3ab=e$, or $(ab)^2 = e$ or $(ab^2)^2 = e$. If ab = ba then G is abelian and so it is isomorphic to $Z_2 \times Z_4$ and $X = Cay(G,S) \cong Q_3$. If $(ab)^3 = e$ then G is presented by $\langle a, b \mid a^2 = b^4 = (ab)^3 = e \rangle$. It is well–known that this group is isomorphic to the symmetric group on four symbols, S₄. A simple GAP program [5] shows that the Cayley graph of G is the following ISR (4,6)–fullerene of Figure 2.

Figure 2. An ISR-Fullerene on 24 vertices.

If $(ab)^2 = e$ then $G = \langle a, b | a^2 = b^4 = (ab)^2 = e \rangle \cong D_8$ and $X \cong Q_3$. Finally, if $(ab^2)^2 = e$ then $b^2 \in Z(G)$. Consider the factor group $G/\langle b^2 \rangle$. Then a simple calculation shows that this group can be presented by $\langle a, b | a^2 = b^2 = e \rangle \cong Z_2 \blacklozenge Z_2$.

Case 3. $a^2 = b^6 = e$ and $c = b^{-1}$. In this case using a similar argument as those given in Cases 1 and 2, one can see that $(ab)^2 = e$ and so G can be presented as follows:

$$G = \langle a, b \mid a^2 = b^6 = (ab)^2 = e \rangle \cong D_{12},$$

giving the 6-fold prism as its Cayley graph, Figure 3. This completes our argument.

Figure 3. The 6-Prism Graph.

ACKNOWLEDGMENTS

The first author is supported by the University of Kashan under grant no. 364988/36. The research of the second author was in part supported by a grant from Payame Noor University.

REFERENCES

- 1. M.E. Conder, Quart. J. Math. Oxford, 1987, 38, 427.
- 2. H.H. Glover, D. Marusic, J. Eur. Math. Soc., 2007, 9, 775.
- 3. M.-H. Kang, Discrete Math., 2011, 311, 2384.
- 4. P.W. Fowler, D.E. Manolopoulos, "An atlas of Fullerenes", The Clarendon Press, Oxford, **1995**.
- 5. The GAP Team, GAP, Groups, Algorithms and Programming, Lehrstuhl De für Mathematik, RWTH, Aachen, **1995**.
- 6. B. Kostant, Notices of the AMS, **1995**, 42, 959.
- 7. B. Kostant, Proc. Natl. Acad. Sci., 1994, 91, 11714.
- 8. B. Kostant, Selecta Mathematica, New Series, 1995, 1, 163.
- H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, *Nature*, **1985**, *318*, 162.
- 10. H.W. Kroto, J.E. Fichier, D.E. Cox, "The Fullerene", Pergamon Press, New York, **1993**.
- 11. A.R. Ashrafi, G.H. Fath-Tabar, Appl. Math. Lett., 2011, 24, 337.