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ABSTRACT. In this paper, a preliminary result from a property-property analysis 
on a series of chemical compounds in regards of quantitative relationship 
between two properties is communicated. The study was conducted on a series 
of 190 inorganic chemical compounds for which both properties taken into study 
are known. The correlation analysis revealed that is a strong relationship between 
the boiling point and the heat of vaporization at the boiling temperature, having 
the variance in the paired series of data explained over 90%. 
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INTRODUCTION  

Regression analysis and error distribution 

Even the first studies about binomial expressions were made by Euclid [1], 
the mathematical basis of the binomial distribution study was put by Jacob 
Bernoulli [1654-1705]. The Bernoulli’s studies, with significance for the theory 
of probabilities [2], were published 8 years later after his death by his nephew, 
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Nicolaus Bernoulli. In Doctrinam de Permutationibus & Combinationibus section of 
this fundamental work he demonstrated the Newton binomial series expansion. 
Later, Abraham De Moivre [1667-1754] put the basis of approximated calculus 
for binomial distribution approximation using the normal distribution [3]. Later, 
Johann Carl Friedrich Gauss [1777-1855] put the basis of mathematical statistics 
[4]. 

The simplest association model is linear. The model assumes that 
there exists a relationship between two paired characteristics expressed by a 
straight line. The expression of this association is given by the implicit equation 
of a straight line: aX + bY + c = 0. If a = 0 then the equation of the line reduces 
to bY + c = 0. Next, if c ≠ 0 results in a relationship which defines the mean of Y 
associated characteristic but no relationship with X. Similarly if b = 0 then the 
equation of line reduces to aX + c = 0 and if further c ≠ 0 leads to a relationship 
which defines the mean of X associated characteristic but no relationship with Y. 
The remained case, if c = 0 defines a degenerated linear model in which there is 
no intercept between the characteristics X and Y. 

Which expression of the linear equation should be used is a matter 
of experimental error treatment. Going further, if a linear model defines the 
relationship between the X and Y characteristics, then if we take samples 
(xi, yi)1≤i≤n of these two (X and Y) characteristics, a relationship in terms of 
experimental errors would be defined. 

The information related to the error distribution is very important. A 
common assumption is to expect an error εi (or ηi) to occur in an equal 
probability as its pair error -εi (or -ηi), and accordingly the distribution of the 
experimental errors is symmetrical. 

An experiment design that gives different weights to the errors led to 
a weighted regression. Usually the weights are function of the observable 
and/or expectance ( )x̂,x(fv iii  , )ŷ,y(gw iii  ). Weighted errors involve data 
normalization, e.g. normalization of errors distribution or at least having a 
known error distribution; knowledge on error distribution is essential in the 
estimation of population parameters. 

Structure-activity relationships 

Building of the first (big) family of molecular descriptors was described 
in [5] and, about ten years after, the usage potential of this sort of methodology 
investigating structure-activity relationships was significantly increased by 
joining with genetic algorithms [6]. 

Relationships commonly called property-property relationships have 
been developed due to the intrinsic relations between some thermodynamic 
functions (see for details [7]). 
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Non-linear relationships are possible but are less desirable, being less 
efficient in prediction than the linear ones, also more difficult to interpret, even 
in some cases may over perform the linear models (see [8]). 

Physico-chemical properties such as the heat of vaporization are of 
technical interest for designing devices that work at the phase transition 
between gaseous and liquid state [9-11]. 

Data on the measured physico-chemical parameters are available for 
relatively few chemical compounds (a representative source is given in [12]); this 
is one of the legitimate reasons for developing relationships among properties. 

In this paper, a computational study was drawn for a series of 190 
inorganic chemical compounds to relate the molar enthalpy (heat) of vaporization 
(∆vapH) at the normal boiling point (tb) referred to a pressure of 101.325 kPa 
(760 mmHg) with their boiling point. Our aim was to find if variable transformation 
leading to normal error distribution would provide significantly simple regression 
models, able to links the boiling temperature with the heat of vaporization. 

RESULTS AND DISCUSSION 

The error distribution analysis of the boiling temperature revealed 
that the normal distribution is rejected at all conventional levels of significance 
over 20% risk to be in error (Table 1). The analysis of lognormal distribution, 
has found that the location parameter determined by the maximum likelihood 
estimation is -309.79. This value is near to -273.15 and suggests that a 
transformation of the scale from Celsius degrees to Kelvin degrees will lead 
to normalization of data. Indeed, after this transformation (T=t°C+273.15) the 
data series became lognormal distributed, and the hypothesis of the distribution 
cannot be rejected at a significance level of 5%. Thus, the probability 
associated with the Anderson-Darling A-D statistic is 9.31% and the probability 
associated with the Kolmogorov-Smirnov K-S statistic is 13.34%. Therefore, the 
data were further transformed by the logarithmic function and analysed again. 
The probability associated with Anderson-Darling statistic become 9.07%, 
the probability associated with Kolmogorov-Smirnov statistic become 12.81% 
(see Figure 1 below) while the estimations of population statistics were 
μ=6.0873 and σ=0.90038. 

Table 1. H0 (Data follow normal distribution): Results for different significance levels α 

Reject  
H0? 

Boiling temperature Heat of vaporization 
α=0.2 α=0.1 α=0.05 α=0.01 α=0.2 α=0.1 α=0.05 α=0.01 

K-S Yes Yes Yes Yes Yes Yes Yes Yes 
A-D Yes Yes Yes Yes Yes Yes Yes Yes 
CS Yes Yes Yes Yes Yes Yes Yes Yes 
K-S = Kolmogorov-Smirnov; A-D = Anderson-Darling; CS = Chi-square 
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The distribution analysis of the heat of vaporization also revealed that 
the normal distribution is rejected at all conventional levels of significance 
over 20% risk of error (Table 1). Looking for lognormal distribution, the three 
parameters of lognormal distribution (with the location parameter determined 
by the maximum likelihood estimation method) were found as being -3.3553. 
This value was used to transform the observed data. After this transformation 
(∆H1=∆H(tb)+3.3553) the data series became lognormal distributed, when the 
hypothesis of the distribution cannot be rejected at 5% risk of error. Thus, the 
probability associated with the Anderson-Darling statistic is 23.53%, and the 
probability associated with the Kolmogorov-Smirnov statistic is 16.34%. Therefore, 
the data were further transformed by the logarithmic function and analyzed 
again. The probability associated with the Anderson-Darling statistic became 
23.95%, the probability associated with the Kolmogorov-Smirnov statistic became 
16.31% (see Figure 2), and the estimations of the population statistics were 
μ = 3.8313 and σ = 0.84324. 

Figure 1. Distribution fit for the transformed boiling temperatures as ln(b.p.(K)) 

Regression analysis was applied on the original data set and normalized 
data set and the derived equations were analysed to see if significant differences 
between models exist. Both the investigated models (created using original and 
transformed data) proved to be significant (Table 2), with a higher contribution 
to the intercept for the model obtained on original data and of the heat of 
vaporization on the model with transformed data. 
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Figure 2. Distribution fit for the transformed heat of vaporization 
as ln(∆vapH +3.3553 kJ/mol) 

Table 2. Characteristics of obtained models 

Model Original data Normalized data
R2 0.9574 0.9259
R2

adj 0.9572 0.9255
RMSE 14.16 0.23
MAE 38.86 0.63
MAPE 7.77 0.18
F (p) 4224 (<0.0001) 2349 (<0.0001) 
Int [95%CI] 24.80 [22.46; 27.14] -1.65 [-1.88; -1.43] 
Coeff [95%CI] 0.11 [0.10; 0.11] 0.90 [0.86; 0.94] 

R2 = determination coefficient; R2
adj = adjusted determination coefficient; 

RMSE = root mean square error; MAE = mean absolute error; 
F = Fisher’s statistic; p = probability to be in error; 
Int = intercept; 95%CI = 95% confidence interval;  
Coeff = the value of coefficient associated to heat of vaporization

Our findings showed that the model created on original data (R=0.9785) 
had a significantly (p=0.0059) higher correlation coefficient compared with 
the model obtained on transformed data (R=0.9622). However, the values 
of the root mean square error (RMSE) and the mean absolute error (MAE) 
showed that the model obtained on transformed data is more reliable (small 
values of both RMSE and MAE).  
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The leave-one-out analysis was carried out to assess the internal 
validity of the models; the main characteristics of the models are given in 
Table 3. 

Table 3. Characteristics of models in the leave-one-out analysis 

Model Q2 RMSE MAE MAPE Floo (ploo) 
Original data 0.9551 14.47 7.69 0.40 3995 (p<0.0001) 
Transformed data 0.9182 0.24 0.15 0.05 2104 (p<0.0001) 

Q2 = determination coefficient in leave-one-out (loo) analysis 
RMSE = root mean square error; MAE = mean absolute error; 
MAPE = mean absolute percentage error 

The root mean square error RMSE, mean absolute error MAE and 
mean absolute percent error MAPE are smaller in the model with transformed 
data (Table 3), thus supporting the validity and reliability of this procedure, even 
the determination coefficient is smaller compared to that obtained on original 
data. 

A training and test analysis was conducted to assess the validity of 
the identified model, with 126 compounds in the training set and 64 in the 
test set. The equation for model with original data is given in Eq(3) 

Ŷ = 25.218+0.107*X Eq(3) 
R2

Tr = 0.9741; n = 126 
R2

Ts = 0.9334; n = 64 

where Ŷ approximates the heat of formation at boiling point temperature 
(Ŷ ~ ∆H(tb)) and X is the boiling point temperature (X = tb, in Celsius degrees). 

The equation for model with transformed data is given in Eq(4): 

Ŷ = -2.145 +0.982*X Eq(4) 
R2

Tr = 0.9633; n = 126 
R2

Ts = 0.8888; n = 64 

where Ŷ approximates the logarithm of the heat of formation at boiling point 
temperature (Ŷ ~ ln(∆H(Tb)+3.3553)) and X is the logarithm of the boiling 
point temperature (X = ln(Tb), in Kelvin). 

Graphical representation of performances in the training and test 
analysis is shown in Figure 3 for original data while in Figure 4 for transformed 
data. 
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Figure 3. Training vs. test analysis: original data 

Figure 4. Training vs test analysis: transformed data 

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

∆ - training 
● - test
Y values - ∆H(tb) 
X values - tb 

∆ - training 
● - test 
Y values - ln(∆H(tb)+3.3553) 
X values - ln(Tb) 



MIHAELA L. UNGUREŞAN, LORENA L. PRUTEANU, LORENTZ JÄNTSCHI, SORANA D. BOLBOACĂ

230 

The training vs test analysis shows an apparently better agreement in 
both training and test sets (see Eq3 and Eq4) when the untransformed data 
are used. This should not lead to the conclusion that is better to be used the 
untransformed data, because for the untransformed data the assumptions of 
the linear regression are not accomplished. Also, the measurement units for 
the transformed data are not the same with the measurement units for original 
data. For instance, turning back to the original measurement units (by raising 
to the exponent of Y and Ŷ values) the determination in the test set (between 
Y and Ŷ) for transformed data becomes 0.9321, a much closer value to that 
given in Eq3. This case - of having lower agreement when the data are properly 
transformed to accomplish the requirements of the regression analysis - is 
much more important than it seems – because, usually, the agreements are 
reported without checking the accomplishment of the requirements. The 
explanation of this fact relies on the intrinsic procedure of obtaining the 
coefficients, namely on the minimization of the sum of squares between 
observed and estimated values. If there exists some points at ends of the 
interval of values with large departures (differences between observed and 
estimated values, see for instance [12]) then the minimization of the sum of 
squares has the tendency to follow it, ignoring and penalizing other departures, 
and the same idea applies for the correlation coefficient. 

CONCLUSIONS 

As can be concluded from this analysis, it seems that these two 
properties (boiling point and heat of vaporization at the boiling point) have a 
large part of their variance explained by one to each other and are suitable 
for a more detailed study meant to increase the explanatory power. 

Conducting of the analysis without checking the assumptions of the 
analysis may lead to incorrect results, usually tending to produce more 
explanatory power than it is. 

MATERIALS AND METHODS 

Data were taken from a recent edition of the serial containing reference 
physical and chemical data [13] and refers to both the boiling point and the 
heat of vaporization, the primary study reporting these values being [14,15]. 

The chemical compounds included in the study, listed in the ascending 
order of their boiling point, are: helium (He), hydrogen (H2), Neon (Ne), Nitrogen 
(N2), Fluorine (F2), Argon (Ar), Oxygen (O2), Krypton (Kr), Fluorine monoxide (F2O), 
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Nitrogen trifluoride (NF3), Silane (SiH4), Xenon (Xe), Phosphorus(III) fluoride (PF3), 
Chlorine fluoride (ClF), Boron trifluoride (BF3), Fluorosilane (SiFH3), Trifluorosilane 
(SiF3H), Diborane (B2H6), Germane (GeH4), Phosphine (PH3), Hydrogen chloride 
(HCl), Phosphorus(V) fluoride (PF5), Difluorosilane (SiF2H2), Tetrafluorohydrazine 
(N2F4), Chlorotrifluorosilane (SiClF3), Hydrogen bromide (HBr), Arsine (AsH3), 
Nitrosyl fluoride (NFO), Hydrogen sulfide (H2S), Difluorine dioxide (F2O2), Arsenic(V) 
fluoride (AsF5), Phosphorothioc trifluoride (PSF3), Stannane (SnH4), Phosphorus(III) 
chloride difluoride (PClF2), Perchloryl fluoride (ClFO3), Thionyl fluoride (SOF2), 
Hydrogen selenide (H2Se), Sulfur tetrafluoride (SF4), Hydrogen iodide (HI), Chlorine 
(Cl2), Tetrafluorodiborane (B2F4), Ammonia (NH3), Dichlorodifluorosilane (SiCl2F2), 
Chlorosilane (SiClH3), Stibine (SbH3), Disilane (Si2H6), Sulfur dioxide (SO2), Nitrosyl 
chloride (NClO), Hydrogen telluride (H2Te), Bromosilane (SiBrH3), Chlorine monoxide 
(Cl2O), Thionitrosyl fluoride (FNS), Dichlorosilane (Cl2H2Si), Chlorine dioxide (ClO2), 
Chlorine trifluoride (ClF3), Boron trichloride (BCl3), Phosphorus(III) dichloride fluoride 
(PCl2F), Tungsten(VI) fluoride (WF6), Tetraborane(10) (B4H10), Bromine fluoride 
(BrF), Digermane (Ge2H6), Trichlorosilane (SiHCl3), Rhenium(VI) fluoride (ReF6), 
Molybdenum(VI) fluoride (MoF6), Hydrazoic acid (HN3), Bromine pentafluoride 
(BrF5), Aluminum borohydride (AlB3H12), Sulfur trioxide (SO3), Osmium(VI) 
fluoride (OsF6), Vanadium(V) fluoride (VF5), Trisilane (Si3H8), Iridium(VI) fluoride 
(IrF6), Arsenic(III) fluoride (AsF3), Tetrachlorosilane (SiCl4), Bromine (Br2), Diphosphine 
(P2H4), Pentaborane(11) (B5H11), Dibromosilane (SiBr2H2), Sulfuryl chloride (SO2Cl2), 
Hydrogen disulfide (H2S2), Thionyl chloride (SOCl2), Phosphorus(III) chloride (PCl3), 
Germanium(IV) chloride (GeCl4), Boron tribromide (BBr3), Water (H2O), Iodine 
pentafluoride (IF5), Selenium tetrafluoride (SeF4), Phosphoryl chloride (PCl3O), 
Tribromosilane (SiHBr3), Trigermane (Ge3H8), Hydrazine (N2H4), Tin(IV) chloride 
(SnCl4), Chromium(VI) dichloride dioxide (CrCl2O2), Bromine trifluoride (BrF3), Vanadyl 
trichloride (VOCl3), Arsenic(III) chloride (AsCl3), Titanium(IV) chloride (TiCl4), Hydrogen 
peroxide (H2O2), Vanadium(IV) chloride (VCl4), Tetrabromosilane (SiBr4), Rhenium(VI) 
oxytetrafluoride (ReF4O), Phosphorus(III) bromide (PBr3), Iodine (I2), Rhenium(VII) 
dioxytrifluoride (ReF3O2), Tungsten(VI) oxytetrafluoride (WOF4), Molybdenum(VI) 
oxytetrafluoride (MoF4O), Germanium(IV) bromide (GeBr4), Phosphoryl bromide 
(PBr3O), Gallium(III) chloride (GaCl3), Tin(IV) bromide (SnBr4), Boron triiodide (BI3), 
Molybdenum(V) fluoride (MoF5), Antimony(III) chloride (SbCl3), Arsenic(III) bromide 
(AsBr3), Rhenium(V) fluoride (ReF5), Phosphorus(III) iodide (PI3), Tantalum(V) 
fluoride (TaF5), Tungsten(VI) oxytetrachloride (WOCl4), Osmium(V) fluoride (OsF5), 
Titanium(IV) bromide (TiBr4), Niobium(V) fluoride (NbF5), Tantalum(V) chloride 
(TaCl5), Niobium(V) chloride (NbCl5), Aluminum bromide (AlBr3), Molybdenum(V) 
chloride (MoCl5), Gallium(III) bromide (GaBr3), Phosphorus (P), Tetraiodosilane 
(SiI4), Antimony(III) bromide (SbBr3), Mercury(II) chloride (HgCl2), Mercury(II) bromide 
(HgBr2), Tungsten(VI) chloride (WCl6), Gallium(III) iodide (GaI3), Tantalum(V) bromide 
(TaBr5), Mercury(II) iodide (HgI2), Mercury (Hg), Tin(IV) iodide (SnI4), Titanium(IV) 
iodide (TiI4), Aluminum iodide (AlI3), Tellurium tetrachloride (TeCl4), Antimony(III) 
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iodide (SbI3), Arsenic(III) iodide (AsI3), Bismuth trichloride (BiCl3), Sulfur (S), Bismuth 
tribromide (BiBr3), Beryllium chloride (BeCl2), Beryllium iodide (BeI2), Tin(II) chloride 
(SnCl2), Tin(II) bromide (SnBr2), Indium(I) bromide (BrIn), Zinc bromide (ZnBr2), 
Selenium (Se), Indium(I) iodide (InI), Tin(II) iodide (SnI2), Thallium(I) chloride (ClTl), 
Zinc chloride (ZnCl2), Cadmium iodide (CdI2), Cadmium (Cd), Thallium(I) bromide 
(BrTl), Thallium(I) iodide (ITl), Cadmium bromide (CdBr2), Lead(II) iodide (PbI2), 
Lead(II) bromide (PbBr2), Thorium(IV) chloride (ThCl4), Titanium(III) chloride (PbCl2), 
Titanium(III) chloride (TiCl3), Cadmium chloride (CdCl2), Tellurium (Te), Chromium(II) 
chloride (CrCl2), Molybdenum(VI) oxide (MoO3), Lead(II) fluoride (PbF2), Thallium(I) 
sulfide (STl2), Sodium hydroxide (NaOH), Titanium(II) chloride (TiCl2), Zinc fluoride 
(ZnF2), Silver(I) bromide (AgBr), Silver(I) iodide (AgI), Silver(I) chloride (AgCl), 
Bismuth (Bi), Lithium hydroxide (LiOH), Lithium fluoride (LiF), Thorium(IV) fluoride 
(ThF4), Lead (Pb), Cadmium fluoride (CdF2), Barium (Ba), Gallium (Ga), Aluminum 
(Al), Germanium (Ge), Gold (Au), and Boron (B). 

In order to relate the properties, the following methodology of analysis 
was applied: 

 Analyses the distribution of the boiling temperature values; if the values
are not normally distributed, then find the transformation which
normalizes it;

 Analyses the distribution of the heat of vaporization values; if the
values are not normally distributed, then find the transformation which
normalizes it;

 On the normalized data, by keeping the association given by the
chemical compound on which these properties were measured, draw
the regression analysis;

 After identification of the regression model, use the inverse of the
transformations, which normalizes the data to analyses the model.

The analysis of the distribution was conducted by EasyFit [16] and the
analysis of regression was conducted by Excel [17]. The distribution parameters 
were estimated using the Maximum Likelihood Method (MLE, [18]), and the 
agreement between the observations and the model were measured using 
Anderson-Darling statistic ([19]) and Kolmogorov-Smirnov statistic ([20, 21]). 
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