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STUDIA UBB. CHEMIA, LV, 4, 2010 
 
 

Professor Mircea V. Diudea is 
born in 1950, November, 11, in Silivas, a 
village of Transylvania, Romania, in a 
family of primary school teachers. He 
followed the high school “Nicolae 
Balcesc”, Cluj and next the Faculty of 
Chemistry, University of Cluj (1969-1974). 
The PhD thesis, entitled “Phenothiazines 
and related structures” (performed in 
organic synthesis, under the guiding of two 
bright Chemists, Professors Valer 
Farcasan and Cornel Bodea) was 
defended in 1979, at Institute of Chemistry, 
Cluj. He worked six years (1974-1980) as a 
Chemist at “Terapia” Drug Factory, Cluj 
and the next seven years (1980-1987) as 
Researcher, at Chemical-Pharmaceutical Research Institute, Cluj. From 1987 
was admitted at the Faculty of Chemistry and Chemical Engineering, of 
“Babes-Bolyai” University, Cluj, as Assistant Professor (1987-1990), next 
as Associate Professor, (1990-1996) and from 1996 as full Professor, at the 
Department of Organic Chemistry. His main courses in Chemistry: Organic 
Chemistry and Biologically Active Compounds. 

In 1986 he established the TOPO GROUP CLUJ, and in 2007 
founded the European Society of Mathematical Chemistry ESMC, of which first 
president is. These data include a period of 21 years when a new 
interdisciplinary science called Molecular Topology has been developed under 
his guidance and resulted in publication of more than 250 scientific articles 
(Hirsch index 22 (ISI) or 26 (Scopus), with more than 1200 citations in ISI 
journals) and 14 authored or edited books, in three directions: 

1. Molecular Topology (basic theory, with the main results including 
matrices: Cluj, Schell, Combinatorial, matriceal operators; topological indices: 
Cluj, Cluj-Ilmenau,Cluj-Tehran, super-index Cluj-Niš, centrality, centric connectivity, 
etc.; algorithms: for inter and intra-molecular ordering, topological symmetry 
(equivalence classes of subgraphs), for enumerating the Kekulé valence 
structures). 

2. QSAR/QSPR (correlating studies, with contributions in: data reduction 
procedures, clustering procedures based on similarity 2D and 3D, optimal 
regression procedures, modeling various phyisico-chemical properties and 
biological activities, algorithms for similarity 2D and 3D and Drug Design). 

3. Nanoscience (basic theory, with contributions in: Design of 
nanostructures by operations on maps and nets, the Romanian “Capra” being 
the first pro-chiral basic operation, rules of stability of fullerenes, a modified Euler 
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theorem in multi-shell nanostructures, original counting polynomials: Omega, 
Pi, Theta, Cluj, the new diamond D5 (hoped to be produced in the NanoLab of 
Carbon Allotropes, organized under his guidance), a Gallery of molecular 
art, etc.).  

The scientific activity in his group is supported by 10 original software 
programs. As didactical activity, Mircea Diudea delivered courses of Molecular 
Topology, QSAR/QSPR and Fullerenes and Nanostructures, basically at 
Master and PhD levels (with 12 PhD theses defended so far). 

Professor Mircea Diudea is member of International Academy of 
Mathematical Chemistry (2005) and member of Editorial Board of: Croatica 
Chemica Acta, MATCH, Commun. Math. Comput. Chem., Internet El. J. Molec. 
Design, Carpath. J. Math., Iran. J. Math. Chem., Acta Univ. Cibin. and Senior 
Editor, Int. J. Chem. Model., NOVA Publishers, New York, USA. Also he is a 
referee at the following Scientific Journals:  

(1) Rev. Roum. Chim., (2) Studia Univ. Babes-Bolyai, (3) Croat. Chem. 
Acta, (4) J. Chem. Inf. Comput. Sci., (5) Chem. Phys. Lett., (6) Int. Elect. J. Mol. 
Design, (7) New J. Chem., (8) SAR/QSAR Env. Res., (9) Bioorg. Med. Chem. 
Lett., (10) MATCH Commun. Math. Comput. Chem. (11) Fullerenes, Nanotubes 
Carbon Nanostruct.,  (l2) Molecules, (13) J. Am. Chem. Soc. (14) Romanian 
Chemical Quarterly Reviews, (15) Ars Combinatorica, (16) Arkivoc, (17) Utilitas 
Math, (18) Eur. J. Operational Res., (19) Math. Comput. Model., (20) J. Math. Chem. 

In the list of his stages of international collaboration, invited lectures, 
conferences, the following are included: Zelinsky Institute of Organic Chemistry, 
Russian Academy, Moscow, Russia, Rudger Bošković Institute, Zagreb, 
Croatia, Central Chemical Research Institute of Hungarian Academy, Budapest, 
Hungary, University of Bayreuth, Germany (as a DAAD fellowship), Technical 
University of Ilmenau, Germany, University of Bielefeld, Germany (as a 
second DAAD fellowship), University of Kiel, Germany, Forschungszentrum 
Karlsruhe, Institut für Nanotechnology, Germany, University of Karlsruhe, 
Germany, University of Erlangen, Germany, University of Exeter, UK, 
University of Hiroshima, Japan, University of Sendai, Japan, University of 
Tsukuba, Japan (five months), Catholic University Leuven, Belgium, 
University of Gent, Belgium, University of Sheffield, U.K., University of 
Miskolc, Hungary, National Institute of Chemistry, Ljubljana, Slovenia, 
University of Valencia, Spain,  University of Milano-Biccoca, Italy, University 
of Tehran, Iran, Technical University, Isfahan, Iran, University of Warsaw, 
Poland, Collegium Budapest, Hungary, University of Kashan, Iran, University of 
Shiraz, Iran, Tarbiat Modares University, Tehran, Iran, State University, St. 
Petersburg, Russia, University of Ljubljana, Slovenia). 
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Books (authored): 
1. M.V. Diudea, S. Todor, F. Igna, Aquatic Toxicology. DACIA, Cluj, 1986 (in Romanian), 

320p. 
2. M.V. Diudea, M. Pitea, M. Butan, Fenothiazines and structurally related drugs. 

DACIA, Cluj, 1992 (in Romanian), 278p. 
3. M.V. Diudea, O. Ivanciuc, Molecular Topology, COMPREX, Cluj, 1995 (in Romanian), 

320p. 
4. M.V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, NOVA, New York, 2002, 

329p. 
5. M.V. Diudea, M. S. Florescu, and P. V. Khadikar, Molecular Topology and Its 

Applications, EFICON, Bucharest, 2006, 381 pp. (Eficon Press, Bucuresti, 
ISBN 978-973-87904-0-7) 

6. M.V. Diudea, Cs. L. Nagy, Periodic Nanostructures, SPRINGER, 2007 (207p). 
7. M.V. Diudea, Nanomolecules and Nanostructures – Polynomials and Indices, 

M C M, No. 10, University of Kragujevac, 2010 (472p). 
 

Edited Books (Ed):  
1. M.V. Diudea, QSPR/QSAR Studies by Molecular Descriptors, NOVA, New York, 

2001, 438p. 
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DIAMOND D5, A NOVEL ALLOTROPE OF CARBON 
 
 

MIRCEA V. DIUDEA∗ 

 
 
ABSTRACT. Design of a hypothetical crystal network, consisting mostly of 
pentagon rings and called diamond D5, is presented. It is shown that the seed 
and repeat-units, as hydrogenated species, show good stability, compared 
with that of C60 fullerene, as calculated at three levels of theory (PM3, 
HF/6-31G(d,p), B3LYP/6-31G). The topology of the network is described in 
terms of the net parameter.  
 
Keywords: diamond D5; nano-dendrimer; multi-tori; crystal-like network. 
 
 
 

INTRODUCTION 
The nano-era, a period starting, since 1985 with the discovery of C60, is 

dominated by the carbon allotropes, studied for applications in nano-technology. 
Among the carbon structures, fullerenes (zero-dimensional), nanotubes (one 
dimensional), graphene (two dimensional), diamond and spongy nanostructures 
(three dimensional) were the most studied [1,2]. Inorganic compounds also 
attracted the attention of scientists. Recent articles in crystallography promoted 
the idea of topological description and classification of crystal structures [3-7].  

Diamond D6, the classical, beautiful and useful diamond has kept its 
leading interest among the carbon allotropes, even as the newer “nano” 
varieties [8-10]. Along with electronic properties, the mechanical characteristics 
appear of great importance, as the composites can overpass the resistance 
of steel or other metal alloys. A lot of efforts were done in the production 
and purification of “synthetic” diamonds, from detonation products [11-14].  

Dendrimers are hyper-branched nano-structures, made by a large 
number of (one or more types) substructures called monomers, synthetically 
joined within a rigorously tailored architecture [15-17]. They can be functionalized 
at terminal branches, thus finding a broad pallet of applications in chemistry, 
medicine, etc [18,19]. 

Multi-tori MT are structures of high genera [1,2,20], consisting of more 
than one tubular ring. They are supposed to result by self-assembly of some 
repeat units (i.e., monomers) which can be designed by opening of cages/ 
fullerenes or by appropriate map/net operations. Such structures can appear in 
spongy carbons or in zeolites [20]. Spongy carbons have been recently 
synthesized [21,22].  

                                                 
∗ Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai” University, 400028 Cluj-

Napoca, Romania, mpop@chem.ubbcluj.ro; diudea@gmail.com 
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There are rigid monomers that can assembly in dendrimers, but the 
growing process stops rather at the first generation. At a second generation, yet 
the endings of repeat units are not free any more, they fit to each other, 
thus forming either an infinite lattice, if the unit symmetry is octahedral or a 
spherical multi-torus, if the unit symmetry is tetrahedral. The last one is the 
case of structures previously discussed in refs [23,24]. 

 
RESULTS AND DISCUSSION ULTI-TORUS DESIGN AND STABILITY 

A tetrapodal monomer M1(Figure 1, left), designed by Trs(P4(T)) 
sequence of map operations [25-28] and consisting of all pentagonal faces, 
can self-arrange to form a dendrimer M5, at the first generation stage 
(Figure 1, right).  

 

M1  

 

M5  
Figure 1. Tetrapodal unit designed by Trs(P4(T))  and the corresponding 

dendrimer, at 1st generation stage 
 
The “growing process” is designed occurring by identifying the trigonal 

faces of two opposite M1 units; at the second generation, six pentagonal 
hyper-cycles are closed, as in molecule M17, Figure 1.  

 

M17  M57  
Figure 2. Dendrimer at 2nd (left) and 5th

  (right) generation stage; 
M57=4S_MT; v=972; e=1770; f5=684; g=58 (infinite structure); adding f3=40, 

 then g=38 (finite structure) 
 
The process is imagined as a “dendrimer growing”, and it is limited 

here at the fifth generation (Figure 2), when a tetrahedral array results: 
4S_MT= M57. 
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Multi-tori herein considered can be viewed either as infinite (i.e., 
open) structures or as closed cages; then, it is not trivial to count the number 
of simple tori (i.e., the genus g) in such complex structures.  

The Euler’s formula [29]: 2(1 )v e f g− + = − , where v, e and f are the 
number of vertices/atoms, edges/bonds, and faces, respectively, is applicable 
only in case of single shell structures. In multi shell structures, we modified [30] 
the Euler formula as: ( 1) 2(1 )v e r p s g− + − − = − , where r stands for the 
number of hard rings (i.e., those rings which are nor the sum of some smaller 
rings), p is the number of smallest polyhedra filling the space of the considered 
structure while s is the number of shells. In case of an infinite structure, the 
external trigonal faces are not added to the total count of faces/rings. The 
calculated g-values are given in figures. 

The number of tetrapodal monomers, added at each generation, up 
to the 5th one, realized as M57, is: 1; 4; 12, 24, 12, 4. The connections in M57 
are complex and to elucidate the large structures up to the fifth generation, 
the reduced graph drawing (Figure 3) was needed [24]. 

 
 

C17  
C57  

Figure 3. Reduced graphs at 2nd (left) and 5th
  (right) generation stage;  

C57: v=57; e=94; r5=42; g=0.5; R(x)=42x5+82x9+144x10 
 
The structure C17 (Figure 3, left) we call the “seed” of all the hereafter 

structures. The structure C57 (Figure 3, right) corresponds to 4S_MT, and is 
equivalent to 4 “condensed” dodecahedra, sharing a common point. By 
considering this common point as an internal shell s, the modified [30] Euler 
formula will give (for v=57; e=94; r=42; p=4 and s=2) a (non-integer) genus 
g=0.5. The ring polynomial R(x) is also given, at the bottom of Figure 3.  

Energetic data, calculated at three levels of theory (Table 1) show a 
good stability of the structures shown in Figure 3 (as hydrogenated species), in 
comparing to C60, the reference structure in Nano-science. Differences in 
HOMO-LUMO gap (in eV) in favor of the new (all sp3 carbon atoms) structures, 
are just expected for hydrogenated (stable) species while the total energies 
are close comparable. The corresponding fullerene-like (containing both sp3 

and sp2 carbon atoms) C57 is close to C60 as total energy while the gap 
vary, function of the considered approach: in PM3 and B3LYP the gap is 
lower for C57 than for C60 while in Hartree-Fock HF this parameter is in favor 
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of C57. The above structures represent energetic minima, as shown by the 
simulated IR vibrations. All-together, these data reveal the proposed structures 
as pertinent candidates to the status of real molecules. 

 
Table 1. Data on the structures in Figure 3 (HOMO-LUMO gap in eV, heat of  

formation Hf in kcal mol-1, and total energy Etot in a.u.) for the intermediate  
structures in building the C57 multi-cage, calculated at the PM3, HF/6-31G(d,p),  

B3LYP/6-31G(d,p) levels of theory; C60 is taken as reference structure. 
 

PM3 HF B3LYP Struct Sym Gap Hf Gap Etot Gap Etot 
C17H12 Td 10.53 131.66 12.99 -650.66 6.04 -654.92 
C57H40 Td 13.438 -49.11 14.270 -2181.99 7.365 -2170.67 

C57 D2d 6.432 1497.92 7.574 -2156.98 1.888 -2196.27 
C60 Ih 6.596 810.82 7.420 -2271.83 2.761 -2286.17 

 
DIAMOND D5 NETWORK 
A monomer C81, derived from C57 and consisting of four closed C20 

units and four open units, and its mirror image (Figure 4) is used to build the 
alternant network of the spongy diamond SD5 (Figure 5).  

 

 

Figure 4. Monomer C81 unit (left-up), and its mirror image-pair (right-up); 
the repeating units of the spongy diamond SD5 network. 

The PM3 optimized structure SD5(2,2,2)=C600H160 shows: heat of 
formation HF=4492.414 kcal/mol; heat of formation per heavy atoms 
HF/HA=7.487; Homo-Lumo-Gap=8.457 eV. In comparison, HF/HA (C60)=13.514 
kcal/mol, thus justifying future studies (see also Table 1). 

 

Figure 5. Spongy diamond SD5 (3,3,3) network: top (left) and corner (right) views. 
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Formulas enabling the calculation of net parameter (vertices v, edges e, 
and the number of monomers m in a cubic domain), the ring polynomial 
R(x), number of carbon atoms C(sp2) and C(sp3) and their ratios together 
with the limits of these quantities (when k trends to infinity) are presented in 
Table 2, function of k – the number of monomers along the edge of cubic 
domain. The network in Figure 5 is related to the P-type crystal proposed by 
Mackay for the Schwarzites [31]. 

 
Table 2. Topology of spongy diamond SD5 (C81) network 

 

 Formulas 
1 2 3 2

5(SD ) 3 [27 23( 1)] 69 12v k k k k= + − = + ;  
3

5(SD ) 130e k= ; 3
5(SD )m k=  

2 5 9 10( )R x ax bx cx= + +  
26 [9 11( 1)]a k k= + − ; 26 [18 26( 1)]b k k= + − ; 26 [27 44( 1)]c k k= + −  

3 3 3 2( ) 53 12C sp k k= −  
4 3 3 2 3 2( %) (53 12 ) / (69 12 )C sp k k k k= − +  

768116.0;69/53%))((lim 3 =
∞→

spC
k

 

 
Notice that there exist other diamond structures, either as real (Lonsdaleite, 

a rare stone of pure carbon discovered at Meteor Crater, Arizona, in 1967) or 
hypothetical [2,33] ones. 

The structure C17, has the skeleton of centrohexaquinane, and was 
synthesized (so far) as centrohexaindane [34], or C-trioxa-s-hexaquinane [35]  

 
CONCLUSIONS 

A new, yet hypothetically, carbon allotrope, called diamond D5, was 
designed by using the structure C81 as the repeating unit (for the spongy 
form SD5). Diamond D5 was theorized here for the first time in literature (even 
the origins of this completely new idea were presented in two previous articles 
[23,24]). The geometric and energetic arguments/proofs, summarily presented 
here, as well as the dense D5 diamond network will be completed in further 
papers [36,37]. 

We expect the same mechanical, thermal, electrical, lubricating, catalyst 
support, biological, etc. properties as those found for the nano-diamond D6. 
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ABSTRACT. A correlating study, using as independent variables the topological 
indices newly developed within the design of the super-index Cluj-Niš CJN, 
is performed on the set of octane isomers. Among the modeled properties, 
the boiling point BP, entropy S and total surface area TSA, gave best scores, in 
mono- to three-variable regressions, with respect to our novel descriptors. 
The most important result was the monovariate description of octane boiling 
points, which is the best result so far published in literature. 
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INTRODUCTION 
Alkanes represent an interesting class of compounds as a starting 

point for the application of molecular modeling procedures. Many properties 
of alkanes vary function of molecular mass or branching, and alkanes can 
be described by using a single type of (carbon) atom. There are properties 
well accounted by a single molecular descriptor, e.g., octane number MON, 
entropy S, molar volume MV, molar refraction MR, etc. Other properties, 
such as boiling point BP, heat of vaporization HV, total surface area TSA, 
partition coefficient LogP, density DENS, critical temperature CT, critical 
pressure CP, and heat of formation DHF, are notable exceptions, being not 
well modeled by a single parameter [1,2]. 

The purpose of the present report is to evaluate the relative 
performances of new topological indices developed within the design of 
super-index Cluj-Niš CJN [3] in relating the hydrocarbon molecular structures to 
a set of physical properties. 

 
LAYER MATRICES 

Layer matrices have been proposed in connection with sequences of 
metrics: DDS (Distance Degree Sequence), PDS (Path Degree Sequence), 
and WS (Walk Sequence) [4-8]. They are built up on layer partitions in a graph. 
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Let G(v)k be the k th layer of vertices v lying at distance k, in the partition 
G(i): 

,( ) { | }k i vG v v d k= =      (1) 

{ }( ) ( ) ; [0,1,.., ]k iG i G v k ecc= ∈    (2) 

with ecci being the eccentricity of i. The entries in the layer matrix (of a vertex 
property) LM, are defined as 

[ ]
,

,
i v

i k v
v d k

p
=

= ΣLM      (3) 

The layer matrix is a collection of the above defined entries: 

{ },( ) [ ] ; ( ); [0,1,.., ( )]i kG i V G k d G= ∈ ∈LM LM  (4) 

with d(G) standing for the diameter of the graph (i.e., the largest distance in G 
 

SHELL MATRICES 
The entries in the shell matrix ShM (of a vertex pair property) are 

defined as follows [8]:     

[ ]
,

, ,[ ]
i v

i k i v
v d k=

= ΣShM M                (5) 

The shell matrix is a collection of the above defined entries: 

{ },( ) [ ] ; V( ); [0,1,.., ( )]i kG i G k d G= ∈ ∈ShM ShM  (6) 

A shell matrix ShM(G) will partition the entries of a square matrix 
according to the vertex (distance) partitions in the graph. It represents a 
true decomposition of the property collected by the info square matrix according 
to the contributions brought by vertex pairs pertaining to shells located at 
distance k around each vertex. 

The shell matrices were recently used as the basis in the calculation 
of super-index super index Cluj-Niš3 CJN [3]. 

 
SHELL-DEGREE-DISTANCE POLYNOMIALS 

The Cramer product of the diagonal matrix of vertex degrees D with the 
distance DI matrix provides the matrix of degree distances [9] denoted DDI. 

( ) ( ) ( )G G G× =D DI DDI     (7) 
The above Cramer product is equivalent (gives the same half sum 

of entries) with the pair-wise (Hadamard) product of the vectors “row sum” 
RS in the Adjacency A and Distance DI matrices, respectively. 
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( ) ( ) ( )RS RS RS• =A DI DDI    (8) 
Next, by applying the Shell operator, we obtain the matrix ShDDI, of 

which column half sums are just the coefficients of the corresponding Shell-
polynomial. 

  ( , ) ( , ) k
k

P x p G k x= ⋅∑ShDDI    (9) 

An index, called Cluj-Tehran CT(ShM,G), with specified M, is defined as 
   ( , ) ( ,1) (1/ 2) ( ,1)CT G P P′ ′′= +ShM ShM ShM  (10) 

where P’ and P” refers to the polynomial firs and second derivative, respectively 
(here calculate dat x=1) [9]. 

 
ECCENTRIC CONNECTIVITY INDEX 

Sharma et al. [10] introduced a distance-based molecular structure 
descriptor, the eccentric connectivity index, which is defined as:  

∑
∈

⋅=
Vv

c vvG )(ecc)deg()(ξ     (11) 

The eccentric connectivity index was successfully used for mathematical 
models of biological activities of diverse nature. The index cξ has been shown 
to give a high degree of predictability of pharmaceutical properties, and 
provide leads for the development of safe and potent anti-HIV compounds. 
The investigation of its mathematical properties started only recently, and 
has so far resulted in determining the extremal values and the extremal 
graphs, and also in a number of explicit formulas for the eccentric connectivity 
index of various products of graphs, several families of benzenoid graphs, 
zigzag and armchair hexagonal belts, nanotubes and nanotori [11]. 

 
MODELING OCTANE PROPERTIES 

To test the correlating ability of the descriptors derived from the degree-
distance matrices (ShDDIk) and Shell-polynomials, we focused attention to the 
set of octanes, as one of the benchmark-sets [12,13] in correlating studies by 
using topological indices. Among several properties tested, three ones (listed 
in Table 1) provided best scores: boiling point BP, entropy S and total surface 
area TSA, in mono- to three- variable regressions, by our novel descriptors. 

The octane topological descriptors are given in Table 2. They include 
the numbers derived from the ShM1 (the basic degree-distance matrix, in 
the Shell-matrix format), the first and second derivatives, D1 and DD1, of the 
corresponding Shell-polynomial, al level k=1 (equivalent to A1) and the same 
descriptors at k=2 (equivalent to A2 – the exponent referring to the remote 
adjacency rank) and also Cluj-Tehran CT1 index and the eccentric connectivity 
index, denoted ECC in Table 2. Statistics are presented in Table 3. 
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Figure 1. The plot of BP vs ShM1 index 

 
The best monovariate model of BP (by the index ShM1) is plotted in 

Figure 1. Compare our results with the best results reported so far in literature 
(Table 3, entry 7) and remark the best result (R2= 0.913) for the monovariate 
model of the octane boiling points. The other results in Table 3 (mono- or 
tri- variable models) can be considered as good (or acceptable) results. 

Table 1. Octanes boiling point BP, entropy S and total surface area TSA values 
 

 Molecule BP S TSA 
1 

 9.153 111.67 415.3 
2 

 9.120 109.84 407.85 
3 

 9.115 111.26 397.34 
4 

 9.114 109.32 396.04 
5 

 9.108 109.43 379.04 
6 

 9.065 103.42 405.11 
7 

 9.079 108.02 384.93 
8 

 9.082 106.98 388.11 
9 

 9.088 105.72 395.08 
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 Molecule BP S TSA 
10 

 9.056 104.74 389.79 
11 

 9.074 106.59 376.91 
12 

 9.073 106.06 368.1 
13 

 9.049 101.48 366.99 
14 

 9.023 101.31 371.75 
15 

 9.031 104.09 392.19 
16 

 9.020 102.06 377.4 
17 

 9.044 102.39 368.93 
18 

 8.971 93.06 390.47 
 

Table 2. Topological Indices of Octanes 
 

Molecule ShM1 D1 DD1 CT1 ShM2 D2 DD2 ECC 
1 140 532 1876 1470 258 972 3402 74 
2 130 452 1406 1155 263 921 2900 65 
3 124 404 1148 978 248 804 2270 63 
4 122 388 1066 921 243 765 2070 61 
5 116 340 808 744 230 668 1572 54 
6 114 340 854 767 269 815 2088 56 
7 112 320 746 693 244 704 1658 54 
8 114 332 790 727 250 740 1796 54 
9 120 376 998 875 266 856 2356 56 

10 106 284 602 585 247 663 1390 52 
11 108 292 620 602 234 636 1350 52 
12 106 276 538 545 230 606 1202 43 
13 100 244 432 460 232 568 996 41 
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Molecule ShM1 D1 DD1 CT1 ShM2 D2 DD2 ECC 
14 98 236 414 443 250 624 1138 43 
15 104 272 546 545 268 732 1552 45 
16 96 224 370 409 244 588 1000 41 
17 102 256 476 494 243 633 1236 43 
18 88 184 246 307 262 592 876 34 

 
Table 3. Statistics (R2) of QSPR Study on Octanes 

 

 Descriptors BP S TSA 
1 ShM1 0.913 0.771 0.520 
2 D1 0.863   
3 CT1 0.818 0.646 0.613 
4 ECC 0.854 0.747 0.583 
5 ShM2&ECC 0.938 0.873 0.902 
6 ShM1&D1&DD1 0.987 0.933 0.914 
7 ShM2&D2&DD2 0.991 0.924 0.870 
8 Best in Octanes 

(monovariable) 
(0.78)13 

(0.77)14 
(0.92)13 

(0.93)14 

(0.950)1 

(0.72)13 
(0.92)14 

 
 

CONCLUSIONS 
A correlating study, using as independent variables the topological 

indices newly developed within the design of the super-index Cluj-Niš CJN, 
was performed on the set of octane isomers. The modeled properties were: 
boiling point BP, entropy S and total surface area TSA, which gave best 
scores, among several properties, in mono- to three-variable regressions, 
with respect to our novel descriptors. The most important result was the 
monovariate description of octane boiling points, which is the best result so 
far published in literature. 
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ABSTRACT. The antioxidant properties of a series of acyl-hydrazones bearing 
2-aryl-thiazole are explored. Some specific parameters were measured: total 
oxidant status (TOS), total antioxidant response (TAR) and oxidative stress 
index (OSI). The study indicates antioxidant properties for compounds 4-6, 
10, 12, while acyl-hydrazones 1 and 2 developed a prooxidant effect. 
 
Keywords: acyl-hydrazone, 2-aryl-thiazole, antioxidant activity 
 
 
 

INTRODUCTION  
Reactive oxygen species (ROS) are produced in metabolic and 

physiological processes, and harmful oxidative reactions may occur in 
organisms, which are removed via enzymatic and non-enzymatic antioxidative 
mechanisms. Under some conditions, the increase in oxidants and decrease 
in antioxidants cannot be prevented, and the oxidative/ antioxidative balance 
shifts toward the oxidative status. Consequently, oxidative stress, involved 
in over 100 disorders, occurs [1-3]. 

ROS are implicated in the pathophysiology of ageing and oxidative 
stress associated pathologies such as diabetes, neurodegenerative diseases, 
atherosclerosis and cardiovascular complications [4-5]. 

ROS are normally produced throughout oxygen metabolism and 
play a major role in physiological and pathological cell redox signalling. 
Oxidative stress appears in the context of non-equilibrium of overproduction 
of ROS of various cellular sources (the mitochondrial respiratory chain, 
nicotinamide adenine dinucleotide phosphate hydride oxidases (NADPHOXs or 
NOXs), xanthine oxidase, lipoxygenases, cytochromes P450, and other 
oxidases) and decreased cellular and plasma antioxidant defenses [6]. 

Hydroxyl group (OH) and its subsequent radicals are the most harmful 
ROS and they are mainly responsible for the oxidative injury of biomolecules. 
Alone hydrogen peroxide and superoxide molecules cannot directly oxidize 
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lipids, nucleic acids and sugars. These species can lead to oxidative injury 
in biomolecules indirectly by producing ·OH via Fenton reaction and/or iron-
catalyzed Haber–Weiss reaction [7]. Oxidized molecules generally form new 
radicals leading to radical chain reactions or they are neutralized by antioxidants. 

Antioxidant molecules prevent and/or inhibit these harmful reactions 
remaining very efficient in preventing the early atherosclerotic lesions and 
inflammatory events implicated in the evolution of the lesions toward [8]. 

Hydrazones display diverse biological and pharmaceutical activities, 
such as antimicrobial, antitumoral, antiinflammatory, antioxidant properties 
[9, 10]. The antioxidant activity may be due to their capacity of metal chelating. 
Under certain abnormal conditions, activated oxygen species release iron 
from the transport and storage proteins, and the resulting “free” iron (Fe2+) 
promotes the formation of the devastatingly reactive toxic ·OH. Thus, chelating 
the iron, hydrazones may inhibit free-radical formation and the consequent 
free radical tissue damage [11]. 

Chromone derivatives possess a wide spectrum of biological activities, 
such as anti-inflammatory, antifungal, antimicrobial, antiviral, antitumour, mainly 
due to their well-recognised antioxidant properties, which stem from their ability 
to neutralise active forms of oxygen and to cut off free radical processes. 
This potential health benefit is ruled by strict structure-activity/ structure-property 
relationships, which, apart from determining their biological action, modulate 
their systemic distribution and bioavailability in sites of oxidation within the 
cell [12, 13]. 

Prompted by these reports, we tested the antioxidant capacity of 14 
acyl-hydrazones bearing 2-aryl-thiazole scaffold. Some of these hydrazones 
have a chromone moiety in their structures, too.  

 
RESULTS AND DISCUSSION 

Our study investigated the effects of the acyl-hydrazones (Scheme 1) in 
an acute experimental inflammation, because of the close relationship between 
this process and ROS as endogenous mediators. The inflammation was 
induced by the i.m. injection of turpentine oil [14, 15]. The antioxidant effect of 
the tested compounds was assessed by evaluating some specific parameters: 
total antioxidant response (TAR), total oxidant status (TOS), and the index 
of oxidative stress (OSI) [OSI=(TOS/TAR)x100].  

Determination of TAR in animal serum is done by a method that allows 
the simultaneous measurement of more molecules with an antioxidant potential, 
against the oxidants from serum. The method is based on the suppression of 
the obtention of dianisidil radicals from the oxidative process of orto-dianisidine, 
radicals colored in brown-yellow, by the antioxidant substances present in 
serum [16]. Therefore, a standardized solution of Fe+2-o-dianisidine complex 
suffers a Fenton reaction with a standardized solution of H2O2, forming ·OH 
radicals. These radicals, in the presence of an acid, oxidize o-dianisidine to 
dianisidil radicals, which determine further oxidation reactions. The antioxidant 
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agents from the sample inhibit the oxidation reactions and determines the 
apparition of color. The method for evaluating the total antioxidant response 
is a colorimetric technique. The intensity of the color at the end of reactions 
is spectrophotometrically determined.  

The method used to determine the total oxidant status is based on 
the oxidation of Fe+2-o-dianisidine complex to Fe+3, which forms a colored 
complex with xilenol-orange [17]. The intensity of this complex is colorimetrically 
determined and is in a direct relationship with the total quantity of oxidant 
molecules present in the sample. 

The calculation of the index of oxidative stress is very useful for 
investigating and comparing the oxidant-antioxidant status of the tested 
compounds. Big values of OSI indicate oxidant properties, while small values 
suggest good antioxidant capacity. 

 

   

   

   

Scheme 1 

The study was performed on adult male Wistar-Bratislava albino rats, 
divided in groups, which received food and water ad libitum. The effects of the 
compounds were compared with those from the inflammation group (I), and with 
those from the group treated with Meloxicam (M), as a reference NSAID with an 
antioxidant activity. A negative control group (C) of healthy rats without any 
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treatment was also used. All the tests were performed in triplicate and the 
average was taken as final reading. 

The total antioxidant response, as a measure of each organism to 
protect himself against the oxidant agents, by releasing different physiological 
antioxidant substances and/or using different exogenous ones, showed a 
higher value than that of the total oxidant status for the control group. This 
resulted in a small TOS/TAR ratio (Tabel 1). On the other hand, for the 
inflammation group, OSI had a bigger value, as expected, because of the 
important increase of TOS, doubled by the decrease of TAR.  

Table 1. Effects of the compounds on the oxidative stress 
 

Compound TOS TAR OSI 
(TOS/TAR)x100 

C 1.52±0.61 2.332±0.033 0.06518 
I 30.25±2.2 1.0922±0.0029 2.769639 
M 19.99±2.5 1.1017±0.0079 1.814469 
1 33.54±2.97 1.0969±0.0026 3.057708 
2 31.04±3.78 1.097±0.004 * 2.829535 
3 27.27±3.52 * 1.1018±0.0029 ** 2.475041 
4 25.92±2.64 * 1.104±0.0065 ** 2.347826 
5 26.66±2.83 * 1.0989±0.0014 ** 2.426062 
6 22.57±3.44 ** 1.0952±0.001 * 2.060811 
7 28.04±3.3 1.0983±0.0007 ** 2.553037 
8 10.98±1.36 **, *** 1.0882±0.002 1.009006 
9 35.77±3.3 1.0963±0.006 3.262793 

10 27.62±2.03 * 1.0978±0.0022 ** 2.515941 
11 40.18±1.83 1.103±0.003 3.642792 
12 20.35±0.69 ** 1.0992±0.0032 1.851346 
13 9.82±1.1 **, *** 1.0855±0.0047 0.904652 
14 45.9±2.46 1.0979±0.0023 4.180709 

 

* p<0.05, **p<0.001 (comparing with inflammation group) 
*** p<0.001 (comparing with Meloxicam group) 

 
The results registered for the tested acyl-hydrazones showed a significant 

decrease of TOS for the compounds 4-6, 10, 12 and also an increase of TAR, 
compared to the inflammation group (p<0.05) (Figures 1 and 2). These values 
resulted in an important reduction of OSI compared to inflammation (Figure 3). 
The results obtained for these compounds reflect their antioxidant properties.  

For compounds 8 and 13, the reduction of TOS/TAR ratio was 
ascribed to the more pronounced decrease of TOS. As for compound 7, the 
reduction was assigned to the more pronounced increase of TAR. These 
three hydrazone derivatives bearing 2-aryl-thiazole may be considered for 
their antioxidant capacity, too. 
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Figure 1. Influence of the compounds on the total oxidant status (TOS) 
 

 
 

Figure 2. Influence of the compounds on the total antioxidant response (TAR) 
 
 
Compounds 8 and 13 reduced TOS more powerful (p<<0.001) than 

meloxicam, the reference drug. This reduction of TOS determined the 
reduction of OSI, too. Values for TAR were superior to those from the group 
inflammation, for all the tested derivatives, excepting compounds  8 and 13. 
For other compounds (1, 2, 9, 11, 14), both TOS and TAR increased, but in 
the case of TOS, the raise was more significant. This led to values of OSI 
bigger than for inflammation. Therefore, we could suspect a prooxidant 
effect of these compounds. 
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Figure 3. Variation of the index of oxidative stress (OSI) for the tested compounds 
 
 
Analyzing the structural profile of the tested acyl-hydrazones, it could be 

observed that N’-(4-(2-(2-phenyl-4-methyl-thiazole-5-yl)-2-oxoethoxi)-benzyliden-
aryl-hydrazides 1 and 2 presented a prooxidant activity. The substitution in para 
of the benzylidene fragment from position 2 of thiazole with brome resulted 
in the reduction of the antioxidant potential of the N’-(2), (3), 4-((2-phenyl-thiazole-
4-yl)-methoxi)-benzyliden-hidrazides 3-14, compared with the unsubstituted 
compounds. Two compounds of this series, 8 and 13, demonstrated a more 
potent antioxidant capacity than meloxicam, the reference drug. For these two 
derivatives, a significant decrease of OSI was registered. 

 
CONCLUSIONS 

The study on the effect of acyl-hydrazones on the oxidative stress 
indicated antioxidant properties for compounds 4-6, 10, 12. These derivatives 
determined a significant reduction of the total oxidant status and an increase 
of the total antioxidant response. For compounds 8 and 13, the decrease of 
the index of oxidative stress resulted from the more pronounced reduction of 
TOS and more pronounced increase of TAR, in the case of compound 7. 
On the other hand, acyl-hydrazones 1 and 2 developed a prooxidant effect. 

SAR study showed that the substitution of phenyl from position 2 of 
thiazole with brome, in position 4, led to a reduction of the antioxidant capacity. 

 
EXPERIMENTAL SECTION 

The experiments were performed on adult male Wistar-Bratislava 
albino rats, weighing 200–250g. The animals were obtained from the Biobase 
of University of Medicine and Pharmacy Cluj-Napoca and housed at 25 ± 2 Co, 
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50 ± 5% relative humidity and 12 h light/dark cycle. They were distributed in 
groups of ten and had free access to water and food. All the experimental 
procedures and protocols used in this study were reviewed and approved 
by the Institutional Animal Ethical Committee (IAEC) of University of Medicine 
and Pharmacy Cluj-Napoca. Experiments were performed in triplicate and the 
average was taken as final reading. 

For the group called Inflammation, each animal was injected i.m. with 
0.6mL/100g (body weight) of turpentine oil, the pro-inflammatory substance. 
The same procedure and dose were used for the other groups, too. After 
that, a 3.2mg/kg dose, equivalent to 0.0091168mmol/kg of Meloxicam, the 
reference standard drug, was administered i.p. to the animals from the 
reference group. The test groups received the synthesized compounds in 
an equi-molar dose with Meloxicam, by the i.p. administration of its 1% 
carboxymethylcelullose suspension.  

Determination of TAR: Serum (20 µl) is mixed with Fe+2-o-dianisidine 
complex R1 (obtained from the dissolution of Fe(NH4)2(SO4)2

.6H2O and of 
3.17 g o-dianisidine in a KCl solution) (800 µl) and solution of R2 H2O2 7.5 mM 
(40 µl). The intensity of the color obtained after 3-4 minutes after the mixing 
is spectrofotometrically determined at λ=444 nm. The blank is represented 
by 860 µl of R1. Calibration is done using serial dillutions of a 1mM/l Trolox 
solution (pH 7.4). The results are expressed in mmol equivalent Trolox/l. 

Determination of TOS: Serum (140 µl) is mixed with xilenol-orange 
solution R1 (obtained from the dissolution of 0.114 g xilenol-orange and of 8.18 g 
NaCl in 900 ml of H2SO4 25 mM) (900 µl) and a solution of Fe(NH4)2(SO4)2.6H2O R2 
(obtained from the dissolution of 1.96 g of Fe(NH4)2(SO4)2

.6H2O and of 3.17 g 
of o-dianisidine chlorhydrate in 1000 ml H2SO4 25 mM) (44 µl). The intensity of 
the color obtained after 3-4 minutes after the mixing is spectrofotometrically 
determined at λ=560 nm. The blank is represented by 900 µl R1 and 184 µl 
distilled water. Calibration is done using serial dillutions of a 200 µmol/l H2O2 
solution. The results are expressed in µmol H2O2 equivalent /l. 

Determination of OSI: OSI = (TOS/TAR) x 100. 
The values are expressed as mean±S.D. for Inflammation group, 

Meloxicam group and the healthy population, separately. The comparisons 
of parameters were performed with Student’s t-test. A p-value < 0.05 was 
accepted as significant. Data were analyzed using the SPSS for Windows 
computing program (Version 11.0). 
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TO WHAT EXTENT THE NMR “MOBILE PROTONS” ARE  
RELEVANT FOR RESTRICTED ROTATIONAL  

STEREOCHEMISTRY PHENOMENA? 
A CASE IN AMINO-s-TRIAZINE SERIES 

 
 
OANA MOLDOVANa,b, PEDRO LAMEIRASc, ERIC HENONc, 

FLAVIA POPAa,b, AGATHE MARTINEZc, DOMINIQUE HARAKATc, 
CARMEN BÂTIUa, YVAN RAMONDENCb, MIRCEA DARABANTUa* 

 
 
ABSTRACT. The use of the so-called NMR “mobile protons” in investigation of 
restricted rotational phenomena about partial double bonds, i.e. Csp2(s-
triazine)-N(exocyclic), is examined in the case of twelve highly elaborated 
amino-s-triazines.  
 
Keywords: amino-s-triazines, NMR, restricted rotation, serinols  
 
 
 

INTRODUCTION  
The 1H NMR assignment of the so-called “mobile (exchangeable, 

labile) protons” XH (X = N, O, S, etc.) is usually achieved by taking into account 
the crucial influence of the solvent (hydrogen bond donor or acceptor), 
heteroatom (X), temperature and molecular environment [1a]. Hydrogen 
bond acceptor solvents, e.g. [D6]DMSO, allow, by their chelatizing aptitude, 
detection of vicinal couplings 3JH,H  in AnX systems (n = 1, 2) of type >CH-NH- 
and >CH-OH. In contrast, in hydrogen bond acceptor solvents, e.g. CDCl3, 
these “mobile protons” are observed much upfield and their broad shaped 
signals are somehow “classical”, for example in the case of NH groups, due 
also to the quadrupolar moment of the isotope 14N (I = 1) [1].  

Higher temperatures increase the XH intra- or intermolecular mobility. 
For complex molecular environments, the correct significance of the “mobile 
protons” 1H NMR location is still a challenging task [1b, 1c].  

In the above context, the aim of this study is to present the synthesis 
and rotational stereochemistry about the Csp2-N partial double bonds in some 
elaborated amino-s-triazines possessing a plethora of “mobile protons” together 
with their versatile role in evaluation of this dynamic behaviour. 
                                                 
a “Babes-Bolyai” University, Department of Organic Chemistry, 11 Arany Jànos st., 400028 Cluj-

Napoca, Romania darab@chem.ubbcluj 
b University and INSA of Rouen, IRCOF – LCOFH, UMR 6014 CNRS COBRA, 76821 Mont Saint-

Aignan Cedex, France 
c University of Reims Champagne-Ardenne, ICMR - LIS, UMR 6229, BP 1039, 51687 Reims, France 
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RESULTS AND DISCUSSION 
Synthesis 
The chemistry of the performed reactions is resumed in Scheme 1. 

Quantitative data are listed in Table 1. 
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Axial
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Scheme 1 

Except our earlier results [2] on this topic, no similar approach was 
reported so far. All compounds are new ones.  

Thus, by successive three highly selective aminations of cyanuric 
chloride with amino-nucleophiles of type C-substituted 2-aminopropane-1,3-
diol (SER-NH2, “serinol”, a-c), we accessed the N-unsymmetrically substituted 
triamino-s-triazines (“melamines”) I-4a-c and II-5a-c. They can be seen as novel 
building-blocks for further iterative synthesis. This account was performed in the 
presence of piperazine, a widely recognised dendritic linker [3].  

The use of tandem two-type serinolic amino-nucleophiles (a-b and I, 
II) needs the comments below: 
 i) C-2-substituted serinols (SER-NH2, a “Methylserinol”, b “Ethylserinol” 
and c TRIS), were designed to play the role of an “open-chain” N-ligand in 
the target melamines. The first step-amination, carried out with a-c, occurred 
quantitatively in a very clean but slow evolution, due most likely to solvation 
effects diminishing their nucleophilicity.    
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Table 1. Reaction conditions and quantitative results in the synthesis 
of compounds I-2a-c, II-3a-c, I-4a-c and II-5a-c (Scheme 1) 

 

a The synthesis and stereochemistry of intermediates 1a-c we reported elsewhere [2a];  
b In case of compounds I-2a-c and II-3a-c as isolated global yields, after two-steps synthesis; in 

case of melamines I-4a-c and II-5a-c as isolated yields, after one-step synthesis.  
c Time required by the slow addition, portionwise, of chlorodiamino-s-triazine to a four fold 

molar excess of piperazine (see EXPERIMENTAL SECTION). 
 
 
ii) Mutatis-mutandis, enantiopure amino-1,3-dioxanes D-NH2, I and II, 

should be seen as “closed-chain” N-ligands. They were readily available by 
our “sulphuric acetalisation” methodology [2b,2d] applied to the corresponding 
(1S,2S)-2-amino-1-(4-nitrophenyl)propane-1,3-diols (“Threo-p-nitrophenylserinols”). 
I and II were used in the second step-amination. In the case of nucleophile II, 
precautions against side reactions, i.e. amination by N-demethylation, required 
milder conditions [2b, 4]. 

iii) The selective attachment of the third nucleophile was accomplished 
based on our previously reported procedure [2a], consisting of the portionwise 
addition of chlorodiamino-s-triazines I-2a-c and II-3a-c (10 hrs. at room 
temperature) to a four fold molar amount of piperazine. Melamines I-4a-c and 
II-5a-c were purified by column chromatography on partially deactivated silica gel. 

 
Rotational stereochemistry phenomena 
Brief overview of our problem 
Starting from the well-known herbicide ATRAZINE®, 2-chloro-4-

ethylamino-6-isopropylamino-s-triazine structural assignment [5], the elucidation 
of rotational diastereomers of N-substituted amino-s-triazines, in solution, is 
a quite difficult task [6]. They are issued from the lpN(exocyclic) → π (deficient 
s-triazine) delocalisation determining an increased order of bonds C(s-triazine)-

No.a SER-NH (R) D-NH (I or II) T (oC) / τ (hrs.) Yield (%)b 
I-2a Me reflux / 16 80 
I-2b Et reflux / 22 66 
I-2c CH2OH 

DX-NH (I) 

reflux / 12 84 
II-3a Me -10 → r.t. / 24 

reflux / 14  
83 

II-3b Et -10 → r.t. / 24 
reflux / 16 

42 

II-3c CH2OH 

Me2N-DX-CH2NH 
(II) 

-10 → r.t. / 24 
reflux / 12 

95 

I-4a Me 80 
I-4b Et 84 
I-4c CH2OH 

DX-NH (I) 

86 
II-5a Me 71 
II-5b Et 67 
II-5c CH2OH 

Me2N-DX-CH2NH 
(II) 

r.t. /10c 
r.t. / 24 

81 
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N(exocyclic). In addition to NMR and 2D-1H,1H NMR techniques [6], in 
investigating this phenomenon, computational methods [6a, 6g] including DFT 
approaches [2a, 2b] are also of interest. Usually, these studies focused on 
(un)symmetrically N-substituted melamines [6] by means of (VT) NMR at low 
temperature. In contrast, apart from ATRAZINE®, minor attention was paid 
to N,N’-substituted-2-chloro-4,6-diamino-s-triazines concerning their dynamic 
behaviour [5b, 6a-c], limited to symmetric 2-chloro-4,6-bis(N,N-dialkylamino) 
derivatives only.  

Some introductory structural observations on our unsymmetrically 
N-substituted amino-s-triazines are mandatory.  

The serinolic “open-chain” site, containing a variable number of 
geminal hydroxymethyl groups, is a priori seen as the most solvated region 
of the molecule while the amino-1,3-dioxanic “closed-chain” units, I and II, are 
anancomeric structures due to the overwhelmingly one-sided conformational 
equilibria, by the adoption of an equatorial position by the C-4’-p-nitrophenyl 
ring (i.e., anancomerising group) [7]. However, their amino-anchorage to 
the s-triazine is essentially different, either axial (in I-2a-c and I-4a-c) or 
equatorial (in II-3a-c and II-5a-c). 

As expected, the increased bond order of bonds C(s-triazine)-
N(exocyclic) in our compounds creating restricted rotation, determined their 
NMR rather complicate appearance, at room temperature (e.g. a “sugar 
like” aspect). Indeed, depending on the π-deficiency of the s-triazine ring, 
higher in chlorodiamino-s-triazines than in melamines, and in an idealised 
topological model, four stereoisomers are possible (Scheme 2). Each of 
them can be generated by a single rotation / (frozen) equilibrium (a step-by-
step interconversion). 

Next, since the intimate rotational status of these four species was 
very different in the above two series, I-2 and II-3 vs. I-4 and II-5, they will 
be discussed separately, in the decreasing order of s-triazine π-deficiency.  

 
Rotational stereochemistry phenomena in chlorodiamino-s-triazines 
As predicted, at room temperature, chlorodiamino-s-triazines I-2a-c 

and II-3a-c consisted of mixtures of four frozen rotamers (Scheme 2). Their 
abundance could be evaluated by means of 1H NMR resonance of protons 
D-NH (α, β, γ) and SER-NH (α’, β’, γ’), the best separated, hence the single 
ones indicative for rotational behaviour. [D6]DMSO was the only appropriate 
NMR solvent in all investigations (Table 2, Table 3). 

In series I-2, the individual assignment of rotamers starts from the 
2D-1H,1H-NOESY chart of compound I-2a (Figure 1, Scheme 2) disclosing 
dipolar interactions between the proton SER-NH (6.46 ppm, signal γ') and 
the p-nitrophenyl ring of the axially anchored D-NH moiety in rotamer I-2a 
(4-a-6-s), hence a “trans” relationship between the N,N’-ligands (Table 2).  
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The “trans” analogue I-2a (4-s-6-a) 
was deduced logically, since its 
incidence was comparable. The 
major rotamer I-2a (a-a) was 
preliminarily established by 
considering the two closed SER-
NH δ values, signals α’ and β', in 
their anti local environment: 6.74 
ppm in I-2a (4-s-6-a, signal β') and 
6.86 ppm in I-2a (a-a), signal α' 
(Table 2). If so, in the syn local 
environments, rotamers I-2a (4-a-
6-s), I-2a (s-s), the δ  values of 
protons SER-NH  are also very 
related, 6.46 (signal γ') and 6.41 
(signal ε') respectively. It is to note 
that compound I-2a was the single 
case that made possible the 
rotamerism recognition based on 
NOESY Experiment.  

   
Figure 1. 2D-1H,1H-NOESY chart of 

compound  I-2a (500 MHz, [D6]DMSO) 

α' β’ γ’ε’ 
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Table 2. Relevant 1H NMR data of restricted rotation about  
C(s-triazine)- N(exocyclic) bonds in compounds I-2a-c:  

axial anchorage of the 1,3-dioxane N-ligand 
 

Discriminating δH (ppm) values and  
multiplicity 3JH,H (Hz)a in blocked rotamers 

a-a 4-s-6-a 4-a-6-s s-s 

No. 
 

T (K) Indicative 
protons 

αb 
α' 

β 
β' 

γ 
γ' 

ε 
ε' 

D-NH 7.62 
(d, 10.0) 

7.52 
(d, 9.5) 

7.44 
(d, 9.5) 

-c 

SER-NH 6.86 
(s) 

6.74 
(s) 

6.46d 

(s) 
6.41 
(bs) 

298 

OH 4.95, 4.75 (2×bs) 

I-2a 

353 D-NH 7.01 (bs); SER-NH 6.51, 6.41 (2×bs); OH 4.50 (bs) 
D-NH 7.62 

(d, 9.0) 
7.52 

(d, 9.5) 
7.46 

(d, 10.0) 
- 

SER-NH 6.77 
(s) 

6.64 
(s) 

6.34 
(s) 

6.33 
(bs) 

303 

OH 4.72-4.68 (m, 5.5), 4.56 (dd, 6.0),  
4.52 (dd, 5.8), 4.47 (dd, 5.3)  

I-2b 

353 D-NH 7.02 (bs); SER-NH 6.43, 6.31 (2×bs); OH 4.37 (bs) 
D-NH 7.53, 7.52, 7.49e 

SER-NH 6.57 
(s) 

6.50 
(s) 

6.27 
(s) 

6.21 
(bs) 

303 

OH 4.51 - 4.58 (m, 6.0) 

I-2c 

353 D-NH 7.01 (bs); SER-NH 6.30, 6.24 (2×bs); OH 4.53, 4.36 (2×bs) 
Final rotational status of I-2a-c  

i) slow free rotation about bond C-4(s-triazine)-NH (D N-ligand) 
ii) slow exchange about bond C-6(s-triazine)-NH (SER N-ligand) 

 

aAs 3J(ax-NH-H-5-e) in D N-ligand, 3J(CH2OH) in SER N-ligand, also supported by the 2D-1H, 
1H-COSY Charts.  

bRelevant peaks for (VT) 1H NMR analysis (Scheme 2, Figure 3).  
cRotamers not found on the D-NH zone of the spectrum: the corresponding abundance 

was adopted from the SER-NH signal, ε'.  
dDeduced from the 2D-1H,1H-NOESY Experiment (Figure 1).  
eNot assignable as overlapped signals. 

 
Therefore, in order to validate this assignment for the entire series I-2 

and to predict the rotamerism occurrence in series II-3 (Table 3), computational 
methods were applied to compounds I-2a (axially anchored) and II-3a 
(equatorially anchored) (Table 4).  

Thus, by optimisation of rotational stereoisomers (a-a) and (s-s) of 
compounds I-2a and II-3a at B3LYP/6-311++G** level of theory and taking 
into account the effect of solvent (DMSO), we found out that: 

i) In compounds I-2a-c, in agreement with 1H NMR data, frozen 
stereoisomers I-2a-c (a-a) were indeed dominant while I-2a-c (s-s) should 
be the minor ones. 
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ii) In contrast, in series II-3, if the 1,3-dioxanic N-ligand was equatorially 
amino-linked to s-triazine, the less crowded rotamers II-3a-c (s-s) were, this 
time, the major species. 

If so, regardless the type of anchorage of D N-ligand (Table 2, Table 3, 
Table 4) in each series, the most polar rotamer, hence the highest solvated, 
was dominant, displaying the most deshielded indicative protons SER-NH 
and D-NH as well. Surprisingly, in spite of opposite incidence of the major 
stereoisomer, I-2 (a-a) vs. II-3 (s-s), overall, the rotameric content was similar 
in the two series (Scheme 2).     

 
Table 3. Relevant 1H NMR data of restricted rotation about  

C(s-triazine)-N(exocyclic) bonds in compounds II-3a-c:  
equatorial anchorage of the 1,3-dioxane N-ligand 

 

Discriminating δH (ppm) values  and  
multiplicity 3JH,H (Hz)a in blocked rotamers 

s-s 4-s-6-a 4-a-6-s a-a 

No. 
 

T (K) Indicative 
protons 

αb 
α' 

β 
β' 

γ 
γ' 

εc 
ε' 

D-NH 8.03 
(dd, 6.0) 

7.91 
(dd, 6.0) 

7.89 
(dd, 6.0) 

- 

SER-NH 6.92 
(s) 

6.82 
(s) 

6.80 
(s) 

- 

298 

OH 4.80 (dd, 5.8), 4.67 (dd, 5.8), 4.66 (dd, 6.0)  

II-3a 

353 D-NH 7.48 (bs); SER-NH 6.58, 6.45 (2×bs); OH 4.52 (bs) 
D-NH 8.05 

(dd, 5.5) 
7.91 

(dd, 6.3) 
7.88 

(dd, 6.3) 
- 

SER-NH 6.83 
(s) 

6.75 
(s) 

6.71 
(s) 

- 

298 

OH 4.81 (dd, 5.5, 6.5), 4.76 (dd, 5.5),  
4.64 – 4.60 (m, 5.8) 

II-3b 

353 D-NH 7.50 (bs); SER-NH 6.47, 6.39 (2×bs); OH 4.53 (bs) 
D-NH 8.01 

(dd, 4.8) 
7.94 

(dd, 6.5) 
7.92 

(dd, 6.5) 
- 

SER-NH 6.64 
(s) 

6.60 
(s) 

6.56 
(s) 

- 

303 

OH 4.68 (dd, 5.5), 4.56 (dd, 5.5),  
4.53 – 4.48 (m, 5.5)  

II-3c 

353 D-NH 7.60 (bs); SER-NH 6.40, 6.31 (2×bs); OH 4.42 (bs) 
Final rotational status of II-3a-c 

i) slow free rotation about bond C-4(s-triazine)-NH (D N-ligand) 
ii) slow exchange about bond C-6(s-triazine)-NH (SER N-ligand) 

 

aAs 3J(eq-CH2-NH) in D N-ligand, 3J(CH2OH) in SER N-ligand, also supported by the 2D-1H, 
1H-COSY Charts.   

bRelevant peaks for (VT) 1H NMR analysis (Scheme 2).  
cRotamers not found on the NH zone of the spectra.  

 
1H NMR data in Tables 2 and 3 also deserved supplementary 

comments with respect to their accuracy (Figure 2). 
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The anticipated number of rotamers was not 1H NMR observed in all 
cases, e.g. terms II-3a-c (a-a) were throughout absent (Table 3) as well as 
D-NH signals of I-2a-c (s-s) (Table 2). It was 13C NMR spectra, which revealed, 
for almost all positions, distinct peaks for each rotameric environment (see 
EXPERIMENTAL SECTION). 

 
Table 4. Bond orders (B.O.), dipole moments µ (D), ZPE corrected relative energies 
ΔH0K (kJ/mol) and relative free energies ΔG298 (kJ/mol) of blocked rotamers (a-a)  

and (s-s) of compounds I-2a and II-3a. 

 

aWiberg bond order calculated within the NBO (Natural Bonding Orbital) analysis.  
bThe effect of solvent took into account by using the implicit solvent method CPCM 

(Conductor-like Polarizable Continuum Model) implemented in Gaussian 09.  

Axial anchorage of the 1,3-dioxane N-ligand 
I-2a (a-a) 

 

I-2a (s-s) 

 

Equatorial anchorage of the 1,3-dioxane N-ligand 
II-3a (a-a) 

 

II-3a (s-s) 
 

 

B.O.a B.O. 
C(4)-
N< 

C(6)-
N< 

D ΔH0

K 
ΔG29

8 
 

C(4)-
N< 

C(6)-
N< 

D ΔH0

K 
ΔG29

8 
 

B3LYP/6-311++G* / CPCM / DMSOb 

I-2a (a-a) I-2a (s-s) 
1.23 1.25 4.84 0.00 0.00 1.22 1.24 2.07 2.93 3.14 

II-3a (a-a) II-3a (s-s) 
1.24 1.25 7.81 0.00 1.38 1.24 1.24 11.63 1.38 0.00 
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 In both series I-2 and II-3, protons NH were strongly chelatized by 
DMSO since clear 3J coupling patterns through nitrogen, ax-NH-CH-5-e 
(Table 2) and eq–CH2-NH- (Table 3) were detectable respectively and fully 
confirmed by the 2D-1H,1H-COSY Charts. Hence, they were not “mobile” at 
all as their lifetime of the spin state, τ1 was greater than 0.1 sec. in compounds 
I-2a-c and greater than 0.15 sec. in II-3a-c [1a]. No broadening of the NH 
lines due to 1J(14N-H) heterocoupling was observed [1c]. Particularly, the 
magnitude of vicinal coupling ax-NH-CH-5-e (Table 2, 9-10 Hz) we 
considered rather stereospecific [2b] for a preferred “s-trans-out” spatial 
arrangement between s-triazinyl and 1,3-dioxan-c-5-yl units with respect to 
the axial bond C-5-N (Scheme 2) [2b]. *  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
* Calculated as τ1 > J-1 (sec.) where J is the vicinal coupling constant >CH-NH-, ~ 9.5 Hz in 

I-2a-c (Table 2) and ~ 6.5 Hz in II-3a-c (Table 3).  
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Figure 2. 1H NMR evolution of compound II-3a (500 MHz time scale, [D6]DMSO) 

p-nitrophenyl                                                                                                                 CH3 
       D-NH                                                                       CH2OH         NMe2 
                                                       H-2-a         H-6-e, -a      CH2NH  
                                                    H-4-a                                        H-5-e 
                          SER-NH                           OH 
 
 
 
 
 
 
      D-NH                                                                       CH2OH          NMe2           CH3  
                       SER-NH                              OH 
                                                        H-2-a        H-6-e, -a 
                                          H-2-e, -4a 
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The same was valid for hydroxyl protons who displayed typical 
(overlapped) dd signals in all rotamers, 3J(CH2-OH) ~ 5.5 Hz, except  compound 
I-2a (Table 2). As one can observe, hydroxyl protons were less sensitive to the 
distinct rotameric ambiances, hence not useful for their quantitative evaluation.  

On heating up to 80 oC, VT 1H NMR spectra disclosed many successive 
coalescences, consistent with a complex dynamic evolution. Therefore, three 
hypotheses simplifying the problem, 
we had to adopt in the following: 
 

i) By intercalation of the 
s-triazine ring, the two N,N’-ligands 
were “sufficiently remote” for a 
certain signal NH exhibited by each 
of them, D-NH (α, β, γ) or SER-
NH (α', β', γ') be relevant for the 
rotational behaviour of the group 
to which this signal belongs, D or 
SER, only (Figure 3).  
 ii) Regardless series, I-2 
or II-3, completely de-blocking of 
a certain rotamer (Scheme 2) was 
mandatory to the equilibria involving, 
distinctly, its two N-ligands, SER 
and D. However, the final status of 
the entire molecule, as a wholly 
free rotating structure, required the 
validation of all fourth pathways. 
 iii) The consecutive nature 
of the four equilibria (Scheme 2) was 
disclosed as the succession in which 
the coalescences of NH signals 
(“indicative protons”) appeared 
(Figure 3).  
 

 Accordingly, one can reach 
the preliminary conclusion that our 
N,N’-unsimmetrically substituted 
chlorodiamino-s-triazines could be 
but partially deblocked, with respect 
to D N-ligand about bonds 
C(4)(s-triazine)-N(exocyclic) only 
(Figure 3). This acquired local 
rotational status (Table 2, Table 3) 

 

 

 

 

 

 
 

Figure 3. VT 1H NMR spectra of compound 
II-3a on 500 MHz time scale ([D6]DMSO) 

                   D-NH                SER-NH  
                            (α+β+γ)              α’ (β’+γ’) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             (α+β+γ) 
 
 
 
 
 
 
 
 
 
 
 
 
             α (β+γ)                      α’ (β’+γ’) 
 
 
 
 
               D-NH                      SER-NH   
              α β γ                     α’ β’ γ’               
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we entitled “slow free rotation” (see the later discussion) while the SER N-
ligand, more solvated at room temperature, displayed, at 80 oC, a typical 
slow exchange status between unequally populated sites [1a].   

Furthermore, since computational data (Table 4) predicted the same 
bond order concerning C(s-triazine)-N(exocyclic) connections, it followed 
that the above delay in the dynamic behaviour of the two N-ligands was 
dictated mainly by solvation and not by electronic effects.  

If so, we calculated the so-called “temperature gradients” 
[Δδ(NH)/ΔT]×103 of protons NH for the major rotational diastereomer in 
series I-2 and II-3 (Table 5) [1b]. 

 
 

Table 5. Temperature gradients of protons NH of compounds I-2a-c and II-3a-c 
 

δH (ppm) (T, K) 
 

[Δδ(NH)/ΔT]×103 

(ppb/K)a 
Compd. 

(as major rotamer) 
                       T (K) D-NH SER-NH D-NH SER-NH 
I-2a (a-a)          298 
                        353 

7.62  
7.01  

6.86  
6.41b 

-11.1 -8.2 

I-2b (a-a)          303 
                        353 

7.62  
7.02  

6.77  
6.43  

-12.0 -6.8 

I-2c (a-a)          303 
                        353 

- 6.57  
6.24  

- -6.6 

II-3a (s-s)          298 
                        353 

8.03  
7.48  

6.92  
6.58  

-10.0 -6.2 

II-3b (s-s)          298 
                         353 

8.05  
7.50  

6.83  
6.47  

-10.0 -6.5 

II-3c (s-s)          303 
                         353 

8.01  
7.60  

6.64  
6.40  

-8.2 -4.8 
 

aCalculated as [δ(NH)353 K - δ(NH)r.t.] / (353 – Tr.t.);  
bAt 353 K, in all cases, as signal displayed by the major SER-NH rotational site. 

 
Thus, as recently Simanek observed in the case of elaborated amino-

s-triazines [8], although temperature gradient is usually applied to peptides 
and proteins [1b], it is generally accepted and indicative that if this coefficient 
is more negative than -4 ppb/K in aqueous solution, the NH group was, 
initially, exposed to solvent and not involved in intramolecular hydrogen bonds. 
Conversely, a temperature gradient less negative than -4 ppb/K indicates the 
NH protons being, primarily, involved in intramolecular hydrogen bonding. 

Our temperature gradients (Table 5) were consistent with the below 
assignments:  

i) Although, at room temperature, D-NH protons were by far more 
chelated by the solvent, upon heating, they faster “escaped” from the solvent 
cage, in agreement with the slow free rotating status reached by these 
“closed-chain” N-ligands. The D-NH-solvation in our chlorodiamino-s-triazines 
was not dependent on the type of D-anchorage, axial or equatorial. 
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ii) In the “open-chain” SER-NH part, the NH protons less interacted with 
the solvent, presumably because of an intramolecular >NH…OH- partial 
association, clearly observed in the case of TRIS derivatives I-2c and II-3c. 

To conclude, the late deblocking of the SER N-ligand was due to 
solvation of its OH protons and not to NH. Moreover, NH signals change 
progressively, from “amide type protons” (r.t.) to authentic “amine protons” 
upon heating up to 353 K.   

In the end, we note the above “unsynchronised” D vs. SER evolution” 
to be completely different with respect to that of symmetrically N,N’-substituted 
chlorodiamino-s-triazines with the same N-ligands, previously reported by us. 
Thus, if the N,N’-identical ligands were serinols a-c (Scheme 1) a complete 
but slow rotational mobility (a single mediated structure) was observed at 
353 K (ΔG≠ = 68.10 – 69.22 kJ/mol). In contrast, if N,N’-identical ligands I or II 
were present (Scheme 1), a single mediated structure (slow rotation, ΔG≠ 71.20 
kJ/mol) was found only in the case of the double equatorial D linkage of II [2b]. 

 
Rotational stereochemistry phenomena in melamines 
Keeping in mind the above findings, melamines I-4a-c and II-5a-c 

were examined following the same algorithm (Table 6, Table 7, Figure 4). 
By replacing the s-triazine C-2-chlorine atom with a bulky and strong 

releasing substituent, piperazine, the π-deficiency of s-triazine ring obviously 
decreased. However, at room temperature, essentially unlike from other simpler 
melamines [6], rotamerism was still existent. Moreover, the independent 
rotational evolution of the two N-ligands was once more revealed, since the 
number of broad singlets, D-NH vs. SER-NH, was not the same (Table 6)**. 
Therefore, the rotational situation of our melamines, at room temperature, 
we assigned as a slow exchange between unequally populated sites [1a]. 
Once again, since but in one case, compound I-4c, the 2D-1H,1H-COSY 
chart detected some 3J(ax-NH-CH-5-e) coupling patterns, the D-NH and 
SER-NH lines width we associated to the above slow motion and not to a 
1J(14N-H) heterocoupling. 

Another interesting feature we observed concerning the “mobile protons”, 
OH and NH of piperazine, Pip-NH. In the less hydroxylated compounds I-4a,  
I-4b, II-5a II-5b, these protons exhibited a unique broad singlet, suggesting a 
rapid intermolecular exchange defining a mediated environment, -CH2OH  
HN-Pip. Hence, an important intermolecular interaction of these melamines 
we had to suppose, e.g. a polymeric self-assembly. If so, in the case of TRIS 
based melamines I-4c and I-5c, it is very likely that the internal association 
of its three geminal hydroxymethyl groups prevailed against the alternative one, 
external, that with NH of piperazine. 

                                                 
** The number of these broad NH singlets is not indicative at all for the number of rotational sites 

because in the case of compound I-4c only the 2D-1H,1H-COSY chart clearly exhibited an 
ax-NH-CH-5-e 3J coupling; it disclosed four rotamers displaying the two broad D-NH singlets.  
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Table 6. Relevant 1H NMR data of restricted rotation about 
C(s-triazine)-N(exocyclic) bonds in melamines I-4a-c and II-5a-c 

Discriminating δH (ppm) values and multiplicity 3JH,H (Hz)a No. 
T (K) D-NH SER-NH Pip-NH OH 

Axial anchorage of the 1,3-dioxane N-ligand 
298 5.80, 5.70  

(2×bs) 
5.56  
(bs) 

4.77  
(bs) 

Tc 5.59 (313, bs) - - 

I-4a 

363 5.49  
(d, 9.5) 

5.43  
(s) 

4.54  
(bs) 

298 5.81, 5.68  
(2×bs) 

5.55, 5.44  
(2×bs) 

4.74  
(bs) 

Tc 5.65 (313, bs) 5.44 (313, bs) - 

I-4b 

363 5.52  
(d, 9.5) 

5.35  
(s) 

4.54  
(bs) 

293 5.92, 5.81  
(2×bs) 

5.57, 5.49  
(2×bs) 

3.45  
(bs) 

2.63 
(s) 

Tc 5.77 (313, bs) 5.48 (313, bs) - - 

I-4c 

353 5.61 
(d, 9.5) 

5.43  
(s) 

- 2.68 
(s) 

Equatorial anchorage of the 1,3-dioxane N-ligand 
298 6.77, 6.60 

(2×bs) 
5.71, 5.60 
(2×bs) 

4.84 
(bs) 

Tc 6.49 (323, bs) 5.62 (323, bs)  

II-5a 

353 6.27 
(bdd as bt, 5.5) 

5.55 
(s) 

4.66 
(bs) 

298 6.82, 6.58 
(2×bs) 

5.59 
(bs) 

4.77 
(bs) 

Tc 5.51 (323, bs) - - 

II-5b 

353 6.29 
(bdd as bt, 5.5) 

5.46 
(s) 

4.68 
(bs) 

303 6.93, 6.80, 6.69 
(3×bs) 

5.62 
(bs) 

3.60 
(bs) 

4.81 
(bs) 

Tc 6.60 (323, bs) - -  

II-5c 

353 
 

6.38 
(bs) 

5.53 
(s) 

- 4.65 
(bs) 

Final rotational status of I-4a-c and II-5a-c 
Fast free rotation about bonds C-4(s-triazine)-NH (D ligand), 

C-6(s-triazine)-NH (SER ligand) and C-2(s-triazine)-N (Pip. Ligand) 
a As 3J(ax-NH-CH-5-e) in D N-ligand, 3J(CH2OH) in SER N-ligand in series I-4; as  

3J(eq-CH2-NH) in D N-ligand, 3J(CH2OH) in SER N-ligand in series II-5. 
 

 

On heating up to 80-90 oC, all our melamines could be completely 
“activated” about all connections C(s-triazine)-N(exocyclic) reaching a fast 
free rotation status as a single mediated structure.  
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Table 7. Maximum temperature gradients of protons NH 
of compounds I-4a-c and II-5a-c 

 

Compd. 
T (K) 

Relevant δH (ppm)  
 

[Δδ(NH)/ΔT]×103 

(ppb / K) 
 D-NH SER-NH Pip-NH D-NH SER-NH Pip-NH 

I-4a     298 
            363 

5.80  
5.49  

5.56 a 

5.43  
4.77 
4.54 

-4.8 -2.0 -3.5 

I-4b     298 
       363 

5.81  
5.52  

5.55  
5.35  

4.74 
4.54 

-4.5 -3.1 -3.1 

I-4c     298 
          353  

5.92  
5.61  

5.57  
5.43  

3.45 
- 

-5.6 -2.5 - 

II-5a    298 
          353  

6.77  
6.27  

5.71  
5.55  

4.84 
4.66 

-9.1 -2.9 -3.3 

II-5b    298 
353  

6.82  
6.29  

5.59  
5.46  

4.77 
4.68 

-9.6 -2.4 -1.6 

II-5c    303 
            353 

6.93 
6.38 

5.62 
5.53 

- 
- 

-11.0 -1.8 - 

aAt r.t., in all cases, as signal displayed by the most deshielded broad singlet, D-NH or 
SER-NH proton respectively. 

 

Their dynamic evolution can be subjected to the below comments: 

i) If different slow exchanging rotameric sites were initially detected 
for each D and SER N-ligand, the coalescence was reached, however, 
almost simultaneously by the two fragments. Higher Tc values (+10 K) were 
observed for melamines II-5a-c against I-4a-c in agreement with the more 
solvated ground states of equatorially anchored derivatives (Table 7). 

ii) The final fast free rotation status acquired by all melamines was 
nicely supported by the line-shape analysis of signals D-NH (sharp doublet 
or broad triplet) and SER-NH (sharp singlet) (Figure 4). Undoubtedly, one 
cannot assign this line-width as to belong to “exchangeable” protons.  In 
contrast, OH and Pip-NH signals, as unique broad lines, were fully consistent 
with the mobility of these protons involved in a fast exchange with the 
solvent in a molecular unique mediated environment. 

iii) Temperature gradients (Table 7) crucially discriminated between 
amino-1,3-dioxane anchorages, axial or equatorial vs. solvent, melamines 
II-5c being, at room temperature, by far more D-NH…O=SMe2 solvated. 
That is, the slow turning equatorial amino-linkage to the s-triazine ring was 
sterically less crowded, facilitating the access of DMSO to this connection.  
In the SER-NH and Pip-NH counterparts, the Δδ(NH)/ΔT values, much less 
negative than -4, confirmed our earlier assignment, namely the intermolecular 
CH2OH  H-Pip interchange in the case of methyl- (a) and ethylserinol (b) 
based melamines.  
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CONCLUSIONS 
A rapid and efficient access to highly elaborated enantiopure melamines 

based on serinols was described. To the title report question,our answer 
consists of considering (i) primarily, the NH protons, involved in partial double 
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bonds, as very relevant for distribution of rotamers, dynamic behavior and 
sterically conditioned relationships with the solvent; (ii) the OH protons, 
indicative for solvation effects as intra-  -OH…HO- or intermolecular  
-OH…HN< associations determining the stability of ground states.    

 
EXPERIMENTAL SECTION 

General. Melting points are uncorrected; they were carried out on 
ELECTROTHERMAL® instrument. Conventional NMR spectra were recorded 
on a Bruker® AM300 instrument operating at 300 and 75 MHz for 1H and 13C 
nuclei respectively. VT NMR experiments were performed on a Bruker® DMX500 
instrument. All NMR spectra were measured in anhydrous commercially 
available deuteriated solvents. The 13C NMR description of compounds 
exhibiting frozen rotamers at room temperature was made by considering 
them as one global structure. Multiple δC values for the same-labelled position 
means mixture of rotamers. Some specific abbreviations were used: bd (broad 
doublet) and bm (broad multiplet), p-NPh (p-nitrophenyl).TLC was performed 
by using aluminium sheets with silica gel 60 F254 (Merck®); flash column 
chromatography was conducted on Silica gel Si 60 (40–63 μm, Merck®). All 
visualisations were realised in UV at 254 nm. IR spectra were performed on 
a Perkin-Elmer® Paragom FT-IR spectrometer. Only relevant absorptions are 
listed [throughout in cm-1: weak (w), medium (m) or (s) strong]. Microanalyses 
were performed on a Carlo Erba® CHNOS 1160 apparatus. Mass spectra (MS) 
were recorded on a Bruker® Esquire Instrument. Specific rotations were 
measured on a POLAMAT® Karl-Zeiss Jena instrument. Full characterisation 
and synthesis of compounds I and II we reported in detail elsewhere [2b].  

 
Typical procedure for the synthesis of compounds I-2a-c and II-3a-c. 

Preparation of compound I-2c 
To anh. K2CO3 (1.512 g, 100%, 10.944 mmol) suspended in anh. THF 

(100 ml), solid 2-amino-2-(hydroxymethyl)propane-1,3-diol (TRIS, 1.325 g, 
10.944 mmol) was added with vigorous stirring. The resulted suspension 
was cooled at -15 °C when cyanuric chloride (2.018 g, 10.944 mmol) as clear 
anh. THF (25 ml) solution was injected rapidly. The reaction mixture was let 
gently to reach room temperature and was kept as such for additional 24 hrs. 
with stirring. After this period, TLC monitoring indicated the intermediate 
2,4-dichloro-6-{[1,3-dihydroxy-2-(hydroxymethyl)prop-2-yl]amino}-s-triazine 1c 
as a single spot (eluent acetone : ligroin 2:1, Rf = 0.80). Freshly prepared 
(4S,5S)-5-amino-4-(4-nitrophenyl)-1,3-dioxane (I, DX-NH2) (2.452 g, 100%, 
10.944 mmol) and anh. K2CO3 (1.512 g, 100%, 10.944 mmol) were added and 
the reaction mixture was heated at reflux (65 °C) for 12 hrs. (TLC monitoring, 
eluent toluene : isopropanol 2:1, Rf = 0.80). When I and 1c were detected in 
small traces only, the reaction mixture was cooled at room temperature. 
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Minerals were filtered off and well washed with anh. THF. The organic filtrate 
was evaporated under reduced pressure to dryness to provide 5.222 g crude 
product. This was purified by column chromatography on silica gel (eluent 
toluene : isopropanol 2:1) affording 4.110 g compound I-2c (84 % yield with 
respect to cyanuric chloride). 

 
2-Chloro-6-{[1,3-dihydroxy-2-(methyl)prop-2-yl]amino}-4-{[(4S,5S)-4-

(4-nitrophenyl)-1,3-dioxan-5-yl]amino}-s-triazine I-2a (80 %) yellowish 
crystalline powder, mp 107-118 °C (flash column chromatography, eluent 
toluene : isopropanol, 2:1 v/v). [Found: C 45.98, H 5.11, N 18.80; C17H21ClN6O6 
(440.12) requires: C 46.32, H 4.80, N 19.06%]. Rf 0.86 (66% toluene/ 
isoporpanol). IR νmax. (KBr) 3320 (s), 2946 (m), 2867 (m), 1581 (s), 1520 (s), 
1411 (m), 1347 (s), 1242 (m), 1175 (s), 1094 (s), 1027 (s), 966 (m), 852 (m), 
804 (s), 744 (m), 711 (m), 592 (w) cm-1. 1H NMR (500 MHz, [D6]DMSO, 353 K): 
δH 1.12 (3 H, s, CH3), 3.48-3.57 (4 H, m, CH2OH), 4.03 (1 H, d, 2JH,H=11.0 Hz,  
H-6-a D-NH), 4.14 (1 H, d, 2JH,H=11.5 Hz, H-6-e D-NH), 4.37 (1 H, d, 3JH,H=9.0 Hz, 
H-5-e D-NH), 4.50 (2 H, bs, OH), 5.00 (1 H, d, 2JH,H=6.0 Hz, H-2-a D-NH), 5.23 
(1 H, d, 2JH,H=6.0 Hz, H-2-e D-NH), 5.28 (1 H, s, H-4-a D-NH), 6.41, 6.51 (1 H, 
2×bs SER-NH), 7.01 (1 H, bs D-NH), 7.66 (2 H, d, 3JH,H=8.5 Hz, H-2, -6 p-NPh), 
8.14 (2 H, d, 3JH,H=7.0 Hz, H-3, -5 p-NPh) ppm; 13C NMR (125 MHz, [D6]DMSO, 
298 K): δC 18.7, 18.8, 19.0, 19.4 (1 C, CH3), 49.3, 49.5, 49.8 (1 C, C-5 D-NH), 
58.8, 59.0 (1 C, C-2 SER-NH), 63.4, 63.5, 63.6, 63.7, 63.8 (2 C, CH2-OH), 69.7, 
70.1, 70.2, 70.5 (1 C, C-6 D-NH), 77.9, 78.2, 78.4, 78.8 (1 C, C-4 D-NH), 93.88, 
93.94, 94.0, 94.2 (1 C, C-2 D-NH), 123.3, 123.5, 123.6, 123.8 (2 C, C-2, -6 
p-NPh), 127.4, 127.5, 127.6, 127.9 (2 C, C-3, -5 p-NPh), 146.7, 146.76, 146.78 
(1 C, C-1 p-NPh), 147.17, 147.21, 147.24 (1 C, C-4 p-NPh), 164.9, 165.1, 165.3, 
165.4, 165.6 (2 C, C-4, -6 s-triazine), 167.76, 167.82, 167.9, 168.2 (1 C, C-2  
s-triazine) ppm. MS (ESI+), m/z (rel. int. %) 463.1 [M+Na+] (7.5), 443.1 [M++2] 
(38), 441.3 [M++H] (100), 315.1 (10). [α]D25=-46 (0.5 % DMSO). 

 
2-Chloro-6-{[1-hydroxy-2-(hydroxymethyl)but-2-yl]amino}-4-{[(4S,5S)-

4-(4-nitrophenyl)-1,3-dioxan-5-yl]amino}-s-triazine I-2b (66 %) yellowish 
crystalline powder, mp 97-102 °C (flash column chromatography, eluent toluene : 
isopropanol, 2:1 v/v). [Found: C 47.35, H 5.25, N 18.79; C18H23ClN6O6 (454.14) 
requires: C 47.53, H 5.10, N 18.48%]. Rf  0.83 (66% toluene/i-PrOH). IR νmax. 
(KBr) 3372 (s), 2972 (m), 2864 (m), 1587 (s), 1521 (s), 1414 (m), 1346 (s), 
1242 (m), 1175 (s), 1095 (s), 1028 (s), 966 (m), 852 (m), 804 (m), 745 (w), 
711 (m), 582 (w) cm-1. 1H NMR (500 MHz, [D6]DMSO, 353 K): δH 0.72 (3 H, t, 
3JH,H=7.3 Hz, CH3), 1.70 (2 H, bq, 3JH,H=7.2 Hz, CH2-CH3), 3.50 (2 H, d, 
2JH,H=11.0 Hz, CH2-OH), 3.59 (2 H, bd, 2JH,H=8.5 Hz, CH2OH), 4.02 (1 H, d, 
2JH,H=11.0 Hz, H-6-a D-NH), 4.14 (1 H, d, 2JH,H=11.5 Hz, H-6-e D-NH), 4.37 
(3 H, bs, H-5-e D-NH, OH), 5.00 (1 H, d, 2JH,H=6.5 Hz, H-2-a D-NH), 5.23 (1 H, d, 
2JH,H=6.0 Hz, H-2-e D-NH), 5.28 (1 H, s, H-4-a D-NH), 6.31, 6.43 (1 H, 2×bs 
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SER-NH), 7.02 (1 H, bs D-NH), 7.65 (2 H, d, 3JH,H=7.5 Hz, H-2, -6 p-NPh), 8.14 
(2 H, bd, 3JH,H=6.0 Hz, H-3, -5 p-NPh) ppm; 13C NMR (125 MHz, [D6]DMSO, 
298 K): δC 7.8, 7.9 (1 C, CH3), 22.1, 22.5, 23.0, 23.1 (1 C, CH2-CH3), 49.3, 
49.37, 49.4, 49.9 (1 C, C-5 D-NH), 60.9 (1 C, C-2 SER-NH), 61.2, 61.3, 61.4, 
61.5 (2 C, CH2OH), 70.07, 70.1, 70.2, 70.5 (1 C, C-6 D-NH), 78.2, 78.4, 
78.5, 78.8 (1 C, C-4 D-NH), 93.89, 93.94 (1 C, C-2 D-NH), 123.2, 123.3, 
123.4, 123.6, (2 C, C-2, -6 p-NPh), 127.6, 127.7, 127.9, 128.0 (2 C, C-3, -5 
p-NPh), 146.7, 146.8, (1 C, C-1 p-NPh), 147.1, 147.17, 147.22 (1 C, C-4 p-NPh), 
164.7, 164.99, 165.04, 165.3, 165.4, 165.7 (2 C, C-4, -6 s-triazine), 167.8 
(1 C, C-2 s-triazine) ppm. MS (ESI+), m/z (rel. int. %) 493.1 [M+K+] (9), 477.1 
[M+Na+] (18), 457.1 [M++2] (35), 455.1 [M++H] (100), 438.2 (11), 437.2 (54), 
419.2 (41). [α]D25=-34 (0.5 % DMSO). 

 
2-Chloro-6-{[1,3-dihydroxy-2-(hydroxymethyl)prop-2-yl]amino}-4-{[(4S, 

5S)-4-(4-nitrophenyl)-1,3-dioxan-5-yl]amino}-s-triazine I-2c (84 %) yellowish 
crystalline powder, mp 200-205 °C (flash column chromatography, eluent toluene : 
isopropanol, 2:1 v/v). [Found: C 45.01, H 4.39, N 18.59; C17H21ClN6O7 (456.12) 
requires: C 44.69, H 4.63, N 18.40%]. Rf 0.80 (66% toluene/i-PrOH). IR νmax. 
(KBr) 3369 (s), 2950 (m), 2865 (m), 1586 (s), 1519 (s), 1418 (m), 1387 (m), 
1347 (s), 1243 (m), 1175 (s), 1096 (s), 1026 (s), 967 (m), 852 (w), 804 (m), 
743 (m), 711 (m), 593 (w) cm-1. 1H NMR (500 MHz, [D6]DMSO, 353 K): δH 3.66 
(6 H, bs, CH2OH), 4.05 (1 H, bd, 2JH,H=9.5 Hz, H-6-a D-NH), 4.14 (1 H, d, 
2JH,H=11.5 Hz, H-6-e D-NH), 4.36 (1 H, bs, H-5-e D-NH), 4.36, 4.53 (3 H, 2×bs, 
OH), 5.00 (1 H, d, 2JH,H=6.0 Hz, H-2-a D-NH), 5.23 (1 H, d, 2JH,H=6.0 Hz,  
H-2-e D-NH), 5.27 (1 H, bs, H-4-a, D-NH), 6.24, 6.30 (1 H, 2×bs SER-NH), 7.01 
(1 H, bs D-NH), 7.65 (2 H, d, 3JH,H=8.0 Hz, H-2, -6 p-NPh), 8.14 (2 H, bd, 
3JH,H=7.0 Hz, H-3, -5 p-NPh) ppm; 13C NMR (75 MHz, [D6]DMSO, 298 K): δC 
49.2, 49.3, 49.7 (1 C, C-5 D-NH), 59.4, 59.6, 60.1 (1 C, C-2 SER-NH), 62.1, 
62.3, 62.4 (3 C, CH2OH), 69.9, 70.3 (1 C, C-6 D-NH), 78.0, 78.1, 78.6 (1 C, 
C-4 D-NH), 93.8 (1 C, C-2 D-NH), 123.2, 123.4 (2 C, C-2, -6 p-NPh), 127.4, 
127.6, 127.7 (2 C, C-3, -5 p-NPh), 146.6 (1 C, C-1 p-NPh), 147.1 (1 C, C-4 
p-NPh), 164.9, 165.0, 165.2, 165.4 (2 C, C-4, -6 s-triazine), 167.6, 167.8 (1 C, 
C-2 s-triazine) ppm. MS (CI, isobutane) m/z (rel. int. %) 513 [M+ +HC(CH3)3-2 H] 
(20), 495 [M+K+] (9), 457 [M+] (100), 421 (10), 225 (11),140(10). [α]D25=-36 (0.5 % 
DMSO). 

 
2-Chloro-6-{[1,3-dihydroxy-2-(methyl)prop-2-yl]amino}-4-{[(2R,4S,5S)- 

5-(dimethylamino)-4-(4-nitrophenyl)-1,3-dioxan-2-yl]methylamino}-s-triazine 
II-3a (83 %) yellowish crystalline powder, mp 126-134 °C (flash column 
chromatography, eluent toluene : ethanol, 1:5 v/v). [Found: C 47.95, H 5.51,  
N 19.39; C20H28ClN7O6 (497.18) requires: C 48.24, H 5.67, N 19.69%]. Rf 0.80 
(17% toluene/EtOH). IR νmax. (KBr) 3382 (s), 3276 (s), 2941 (m), 2878 (m), 
1587 (s), 1521 (s), 1462 (m), 1412 (m), 1349 (s), 1153 (m), 1113 (m), 1057 (s), 
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852 (w), 804 (m), 753 (w), 709 (m), 571 (w) cm-1. 1H NMR (500 MHz, [D6]DMSO, 
353 K): δH 1.27 (3 H, s, CH3), 2.23 [6 H, s, N(CH3)2], 2.88 (1 H, dd as t, 3JH,H=3.0 
Hz, H-5-e D-NH), 3.52 (2 H, bs, CH2-NH), 3.60 (4 H, bs, CH2OH), 3.98 (1 H, 
dd, 3JH,H=2.0 Hz, 2JH,H=12 Hz, H-6-a D-NH), 4.46 (1 H, d, 2JH,H=12.0 Hz, H-6-e 
D-NH), 4.52 (2 H, bs, OH), 5.01 (1 H, dd as t, 3JH,H=4.3 Hz, H-2-a D-NH), 
5.20 (1 H, d, 3JH,H=2.0 Hz, H-4-a D-NH), 6.45, 6.58 (1 H, 2×bs SER-NH), 7.48 
(1 H, bs, CH2NH), 7.66 (2 H, d, 3JH,H=8.5 Hz, H-2, -6 p-NPh), 8.17 (2 H, d, 
3JH,H=9.0 Hz, H-3, -5 p-NPh) ppm; 13C NMR (125 MHz, [D6]DMSO, 298 K): 
δC 18.8, 19.0 (1 C, CH3), 43.8 [2 C, N(CH3)2], 44.3, 44,4, 44,8 (1 C, CH2NH), 
58.46, 58.51 (1 C, C-5 D-NH), 58.98, 59.04 (1 C, C-2 SER-NH), 63.5, 63.6, 
63.6, 63.9 (2 C, CH2OH), 64.4, 64.6 (1 C, C-6 D-NH), 80.05, 80.12, 80.3 (1 C, 
C-4 D-NH), 99.0, 99.2, 99.5 (1 C, C-2 D-NH), 123.3 (2 C, C-2, -6 p-NPh), 
127.1 (2 C, C-3, -5 p-NPh), 146.7 (1 C, C-1 p-NPh), 148.8, 148.9 (1 C, C-4 
p-NPh), 165.0, 165.3, 165.6, 165.85, 165.91 (2 C, C-4, -6 s-triazine), 167.88, 
167.93, 168.4 (1 C, C-2 s-triazine) ppm. MS (ESI+), m/z (rel. int. %) 537.2 
[M+K+] (2), 520.1 [M+Na+] (3.5), 500.2 [M++3], 498.1 [M++H] (100), 462.2 (7), 
273.2 (7), 208.0 (11), 182.2 (17). [α]D25=+147 (0.5 % DMSO). 

 
2-Chloro-6-{[1-hydroxy-2-(hydroxymethyl)but-2-yl]amino}-4-{[(2R,4S, 

5S)-5-(dimethylamino)-4-(4-nitrophenyl)-1,3-dioxan-2-yl]methylamino}-
s-triazine II-3b (42 %) yellowish crystalline powder, mp 110-115 °C (flash column 
chromatography, eluent diethyl ether : ethanol : water, 0.5:8:1 v/v/v). [Found: C 
48.98, H 5.81, N 19.39; C21H30ClN7O6 (511.19) requires: C 49.27, H 5.91, N 
19.15%]. Rf  0.73 (5% Et2O/84% EtOH/H2O). IR νmax. (KBr) 3275 (s), 2971 (m), 
2881 (m), 1591 (s), 1521 (s), 1464 (m), 1411 (s), 1349 (s), 1154 (m), 1117 (m), 
1059 (s), 852 (w), 802 (m), 752 (w), 708 (m), 570 (w) cm-1. 1H NMR (500 MHz, 
[D6]DMSO, 353 K): δH 0.779, 0.784 (3 H, 2×t, 3JH,H=7.5 Hz, CH3), 1.79 (2 H, q, 
3JH,H=7.3 Hz, CH2CH3), 2.27 [6 H, s, N(CH3)2], 2.97 (1 H, bs, H-5-e D-NH), 
3.51-3.54 (2 H, m, CH2-OH), 3.56 (2 H, dd as t, 3JH,H=3.0 Hz, CH2NH), 3.67 
(2 H, 2×d as t, 2JH,H=11.0, 12.5 Hz, CH2OH), 4.00 (1 H, d, 2JH,H=11.5 Hz, H-6-a 
D-NH), 4.49 (1 H, d, 2JH,H=12.5 Hz, H-6-e D-NH), 4.53 (2 H, bs, OH), 5.01 
(1 H, dd as t, 3JH,H=4.5 Hz, H-2-a D-NH), 5.24 (1 H, bs, H-4-a D-NH), 6.39, 
6.47 (1 H, 2×bs SER-NH), 7.50 (1 H, bs, CH2NH), 7.67 (2 H, d, 3JH,H=8.5 Hz, H-2, 
-6 p-NPh), 8.17 (2 H, d, 3JH,H=9.0 Hz, H-3, -5 p-NPh) ppm; 13C NMR (125 MHz, 
[D6]DMSO, 298 K): δC 7.9, 7.96, 8.01, 8.1 (1 C, CH3), 22.2, 22.3, 22.6, 23.0, 
23.1 (1 C, CH2-CH3), 43.8 [2 C, N(CH3)2], 44.2, 44.4, 44.8 (1 C, CH2NH), 58.6  
(1 C, C-5 D-NH), 60.9, 61.0, 61.1, 61.2, (1 C, C-2 SER-NH), 61.46, 61.51, 61.65, 
61.71 (2 C, CH2OH), 64.4, 64.6 (1 C, C-6 D-NH), 80.0, 80.1, 80.3 (1 C, C-4 
D-NH), 99.1, 99.3, 99.6 (1 C, C-2 D-NH), 123.4 (2 C, C-2, -6 p-NPh), 127.1 
(2 C, C-3, -5 p-NPh), 146.8 (1 C, C-1 p-NPh), 148.6, 148.8 (1 C, C-4 p-NPh), 
165.0, 165.2, 165.6, 165.8, 165.9, 166.0, (2 C, C-4, -6 s-triazine), 167.3, 167.9, 
168.3 (1 C, C-2 s-triazine) ppm. MS (ESI+), m/z (rel. int. %) 515.4 [M++4] (8), 
514.4 [M++3], 512.4 [M++H] (100), 498.4 (4). [α]D25=+128 (0.5 % DMSO). 
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2-Chloro-6-{[1,3-dihydroxy-2-(hydroxymethyl)prop-2-yl]amino}-4-{[(2R, 
4S,5S)-5-(dimethylamino)-4-(4-nitrophenyl)-1,3-dioxan-2-yl]methylamino}-
s-triazine II-3c (95 %) yellowish crystalline powder, mp 138-140 °C (flash column 
chromatography, eluent ligroin : acetone, 1:4 v/v). [Found: C 47.08, H 5.55, 
N 19.38; C20H28ClN7O7 (513.17) requires: C 46.74, H 5.49, N 19.08%]. Rf 0.80 
(20% ligroin/acetone). IR νmax. (KBr) 3369 (s), 2945 (m), 2878 (m), 1583 (s), 
1520 (s), 1412 (m), 1348 (s), 1299 (m), 1154 (m), 1113 (m), 1054 (s), 1014 (m), 
852 (w), 804 (m), 710 (m), 597 (w) cm-1. 1H NMR (500 MHz, [D6]DMSO, 353 K): 
δH 2.28 [6 H, s, N(CH3)2], 2.97 (1 H, bs, H-5-e D-NH), 3.53 (2 H, s, CH2-NH), 
3.72 (6 H, s, CH2OH), 4.01 (1 H, d, 2JH,H=11.5 Hz, H-6-a D-NH), 4.42 (3 H, bs, 
OH), 4.49 ( 1 H, d, 2JH,H=12.5 Hz, H-6-e D-NH), 5.03 (1 H, bs, H-2-a D-NH), 
5.24 (1 H, bs, H-4-a D-NH), 6.31, 6.40 (1 H, 2×bs SER-NH), 7.60 (1 H, bs 
CH2NH), 7.68 (2 H, d, 3JH,H=8.5 Hz, H-2, -6 p-NPh), 8.18 (2 H, d, 3JH,H=8.5 Hz, 
H-3, -5 p-NPh) ppm; 13C NMR (75 MHz, [D6]DMSO, 298 K): δC 43.7 [2 C, 
N(CH3)2], 44.2, 44.6 (1 C, CH2NH), 58.5 (1 C, C-5 D-NH), 59.6, 60.0, 60.2 
(1 C, C-2 SER-NH), 62.4, 62.5 (3 C, CH2OH), 64.4, 65.3, 67.4 (1 C, C-6 D-NH), 
80.5 (1 C, C-4 D-NH), 99.2 (1 C, C-2 D-NH), 123.2 (2 C, C-2, -6 p-NPh), 
126.9 (2 C, C-3, -5 p-NPh), 146.7 (2 C, C-1, -4 p-NPh), 165.2, 165.7 (2 C, 
C-4, -6 s-triazine), 167.7, 168.2 (1 C, C-2 s-triazine) ppm. MS (CI, isobutane), 
m/z (rel. int. %) 514 [M++H] (25) 278 (5), 178 (100), 140 (18), 116(11), 104 (21), 
87 (18). [α]D25=+157 (0.5 % DMSO). 

 
Typical procedure for the synthesis of compounds I-4a-c and II-5a-

c. Preparation of compound I-4c 
At room temperature and with vigorous stirring, anh. K2CO3 (0.604 g, 

4.377 mmol) was suspended in a solution obtained by dissolving anh. 
piperazine (1.504 g, 17.508 mmol) in anh. THF (125 mL). To this suspension, 
chlorodiamino-s-triazine I-2c (2.000 g, 4.377 mmol) was added portionwise 
(5 equal portions, 0.400 g I-2c / portion, each 2 hours). After each addition and 
within 2 hours, TLC monitoring indicated the completion of reaction as follows: 
total consumption of I-2c (eluent toluene : isopropanol = 2:1 v/v, Rf = 0.8, 
visualisation in UV 254 nm) and formation of I-4c (eluent ethanol : aq. NH3 
25% = 9:1 v/v, Rf = 0.76, double visualisation: UV 254 nm then I2 bath). 
After addition, the reaction mixture was stirred at room temperature for 24 hrs. 
Minerals were filtered off and well-washed with anh. THF. The combined THF 
solution was evaporated under reduced pressure to yield 2.900 g crude material 
which was separated by column chromatography on silica gel (eluent ethanol : 
aq. NH3 25% = 9:1 v/v, Rf = 0.76, double visualisation: UV 254 nm then I2 bath). 
The isolated I-4c, 2.267 g was taken with anh. THF (2 mL) then diethyl 
ether was added and the resulted fine yellow suspension was stirred at room 
temperature for 1 hr. After cooling at -20 oC for 12 hrs., filtering off, washing 
with could diethyl ether and drying 1.910 g pure I-4c were obtained (86% yield 
with respect to I-2c).         
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1-{6-{[1,3-Dihydroxy-2-(methyl)prop-2-yl]amino}-4-{[(4S,5S)-4-(4-nitro-
phenyl)-1,3-dioxan-5-yl]amino}-s-triazin-2yl}-piperazine I-4a (80 %) yellowish 
crystalline powder, mp 123-133 °C (flash column chromatography, eluent ethanol : 
aq. NH3 25% 9:1 v/v). [Found: C 51.55, H 5.80, N 23.03; C21H30N8O6 (490.23) 
requires: C 51.42, H 6.16, N 22.84%]. Rf 0.77 (90% ethanol/aq. NH3 25%). 
IR νmax (KBr) 3400 (s), 2922 (m), 2855 (s), 1548(s), 1501 (s), 1444 (s), 1346 (s), 
1274 (m), 1174 (m), 1106 (m), 1056 (m), 1027 (m), 875 (w), 852 (w), 810 (m), 
744 (w),711 (m), 583 (w) cm-1. 1H NMR (500 MHz, [D6]DMSO, 363 K): δH 1.21 
(3 H, s, CH3), 2.65 (4 H, t, 3JH,H=5.0 Hz, H-3, -5 Piperazine), 3.47 (2 H, d, 
2JH,H=10.5 Hz, CH2OH), 3.48 (4 H, t, 3JH,H=5.0 Hz, H-2, -6 Piperazine), 3.56 
(2 H, d, 2JH,H=10.5 Hz, CH2OH), 4.02 (1 H, d, 2JH,H=11.0 Hz, H-6-a D-NH), 4.11 
(1 H, dd, 3JH,H=1.5 Hz, 2JH,H = 11.5 Hz, H-6-e D-NH), 4.41 (1 H, d, 3JH,H = 9.0 
Hz, H-5-e D-NH), 4.54 (3 H, bs, OH, Pip-NH), 5.00 (1 H, d, 2JH,H=6.5 Hz, H-2-a 
D-NH), 5.225 (1 H, s, H-4-a D-NH), 5.230 (1 H,d, 2JH,H=5.5 Hz, H-2-e D-NH), 
5.43 (1 H, s SER-NH), 5.49 (1 H, d, 3JH,H=9.5 Hz D-NH), 7.62 (2 H, d, 3JH,H=9.0 
Hz, H-2, -6 p-NPh), 8.11 (2 H, d, 3JH,H=8.5 Hz, H-3, -5 p-NPh) ppm; 13C NMR 
(125 MHz, [D6]DMSO, 298 K): δC 19.2 (1 C, CH3), 44.2, 44.3 (2 C, C-3, -5 
Piperazine), 45.8, 45.9, 46.0 (2 C, C-2, -6 Piperazine), 48.8, 48.9 (1 C, C-5 
D-NH), 57.9 (1 C, C-2 SER-NH), 64.6, 64.9 (2 C, CH2OH), 70.5, 70.6, 70.8, 
71.0 (1 C, C-6 D-NH), 78.5, 78.6, 78.9, 79.0 (1 C, C-4 D-NH), 93.9, 94.0, 
94.1 (1 C, C-2 D-NH), 123.2, 123.5 (2 C, C-2, -6 p-NPh), 127.4, 127.6 (2 C, 
C-3, -5 p-NPh), 147.0, 147.1 (2 C, C-1, -4 p-NPh), 164.17, 164.22, 164.3, 164.5 
(1 C, C-2 s-triazine), 165.3, 165,4 (2 C, C-4, -6 s-triazine) ppm. MS (ESI+), m/z 
(rel. int. %) 491.2 [M++H] (100), 403.2 (22), 208.0 (29). [α]D25=+28 (0.5 % DMSO). 

 
1-{6-{[1-Hydroxy-2-(hydroxymethyl)but-2-yl]amino}-4-{[(4S,5S)-4-(4-

ni- trophenyl)-1,3-dioxan-5-yl]amino}-s-triazin-2-yl}-piperazine I-4b (84 %) 
yellowish crystalline powder, mp 125-130 °C (flash column chromatography, 
eluent ethanol : aq. NH3 25% 9:1 v/v). [Found: C 51.99, H 6.22, N 21.95; 
C22H32N8O6 (504.24) requires: C 52.37, H 6.39, N 22.21%]. Rf 0.66 (90% 
ethanol/aq. NH3 25%). IR νmax (KBr) 3401 (s), 2966 (m), 2856 (s), 1552 (s), 
1500 (s), 1445 (s), 1346 (s), 1174 (m), 1106 (m), 1061 (m), 1026 (m), 873 (w), 
852 (w), 809 (m), 744 (w), 710 (w), 583 (w) cm-1. 1H NMR (500 MHz, 
[D6]DMSO, 363 K): δH 0.74 (3 H, t, 3JH,H = 7.3 Hz, CH3), 1.73, 1.74 (2 H, 2×q, 
3JH,H=7.5 Hz, CH2CH3), 2.69 (4 H, t, 3JH,H=5.0 Hz, H-3, -5 Piperazine), 3.49-3.51 
(6 H, m, CH2OH, H-2, -6 Piperazine), 3.56 (2 H, d, 2JH,H=10.5 Hz, CH2OH), 4.02 
(1 H, d, 2JH,H=11.5 Hz, H-6-a D-NH), 4.12 (1 H, dd, 3JH,H=1.5 Hz, 2JH,H = 11.5 Hz, 
H-6-e D-NH), 4.41 (1 H, d, 3JH,H = 9.0 Hz, H-5-e D-NH), 4.54 (3 H, bs, OH, 
Pip-NH), 5.00 (1 H, d, 2JH,H=6.5 Hz, H-2-a D-NH), 5.23 (1 H, d, 2JH,H=5.5 Hz,  
H-2-e D-NH), 5.24 (1 H, s, H-4a D-NH), 5.35 (1 H, s SER-NH), 5.52 (1 H, d, 
3JH,H=9.5 Hz D-NH), 7.62 (2 H, d, 3JH,H=8.0 Hz, H-2, -6 p-NPh), 8.10 (2 H, d, 
3JH,H=8.5 Hz, H-3, -5 p-NPh) ppm; 13C NMR (125 MHz, [D6]DMSO, 298 K): δC 8.1 
(1 C, CH3), 23.4, 23.46, 23.54 (1 C, CH2CH3), 43.5, 44.0 (2 C, C-3, -5 Piperazine), 
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45.45, 45.55, 45.64, 45.7 (2 C, C-2, -6 Piperazine), 48.8, 48,9 (1 C, C-5 D-NH), 
60.2 (1 C, C-2 SER-NH), 62.5, 62.9 (2 C, CH2OH), 70.5, 70,6 70.8, 70.9 (1 C, 
C-6 D-NH), 78.5, 78.95, 79.04 (1 C, C-4 D-NH), 93.9, 94.0 94.1 (1 C, C-2 D-NH), 
123.2, 123.5 (2 C, C-2, -6 p-NPh), 127.3, 127.6 (2 C, C-3, -5 p-NPh), 147.0, 
147.1 (2 C, C-1, -4 p-NPh), 164.5 (1 C, C-2 s-triazine), 165.4, 165.6 (2 C, C-4, 
-6 s-triazine) ppm. MS (ESI+), m/z (rel. int. %) 505.3 [M++H] (100), 403.2 (25), 
224.0 (12), 208.0 (37). [α]D25=+42 (0.5 % DMSO). 

 
1-{6-{[1,3-Dihydroxy-2-(hydroxymethyl)prop-2-yl]amino}-4-[(4S,5S)-4-

(4-nitrophenyl)-1,3-dioxan-5-yl]amino}-s-triazin-2-yl}-iperazine I-4c (86 %) 
yellowish crystalline powder, mp 146-157 °C (flash column chromatography, 
eluent ethanol : aq. NH3 25% 9:1 v/v). [Found: C 50.11, H 5.88, N 21.90; 
C21H30N8O7 (506.22) requires: C 49.80, H 5.97, N 22.12%]. Rf 0.71 (90% 
ethanol/aq. NH3 25%). IR νmax (KBr) 3392 (m), 2943 (m), 2856 (m), 1549 (s), 
1504 (s), 1446 (m), 1346 (s), 1273 (m), 1174 (m), 1105 (m), 1025 (m), 872 (w), 
852 (w), 809 (m), 744 (w), 711 (w), 584 (w) cm-1. 1H NMR (500 MHz, [D6]DMSO, 
353 K): δH 2.65 (3 H, t, 3JH,H=4.8 Hz, H-3, -5 Piperazine), 2.68 (3 H, s, OH), 3.46 
(4 H, t, 3JH,H=5.0 Hz, H-2, -6 Piperazine), 3.62 (6 H, s, CH2OH), 4.02 (1 H, d, 
2JH,H=11.0 Hz, H-6-a D-NH), 4.11 (1 H, 2JH,H=11.0 Hz, H-6-e D-NH), 4.40 (1 H, 
bd, 3JH,H = 7.5 Hz, H-5-e D-NH), 5.00 (1 H, d, 2JH,H=6.5 Hz, H-2-a D-NH), 
5.22 (1 H, s, H-4-a D-NH), 5.23 (1 H, d, 2JH,H=5.5 Hz, H-2-e D-NH), 5.43 (1 H, 
s SER-NH), 5.61 (1 H, d, 3JH,H=9.5 Hz D-NH), 7.63 (2 H, d, 3JH,H=9.0 Hz, H-2, -
6 p-NPh), 8.12 (2 H, d, 3JH,H=8.0 Hz, H-3, -5 p-NPh) ppm; 13QC NMR (75 MHz, 
[D6]DMSO, 298 K): δC 43.9 (2 C, C-3, -5 Piperazine), 45.4 (3 C, C-2, -6 
Piperazine), 48.8 (1 C, C-5 D-NH), 61.0, 61.3 (4 C, C-2, CH2OH, SER-NH), 
70.5, 70.7 (1 C, C-6 D-NH), 78.4, 78,8 (1 C, C-4 D-NH), 93.9 (1 C, C-2 D-NH), 
123,1, 123,3 (2 C, C-2, -6 p-NPh), 127.1, 127.4 (2 C, C-3, -5 p-NPh), 146.9 
(2 C, C-1, -4 p-NPh), 164.2 (1 C, C-2 s-triazine), 165.0, 165.2, 165.4, 165.5 
(2 C, C-4, -6 s-triazine) ppm. MS (DCI positive, 200 eV, isobutane), m/z (rel. 
int. %) 563 [M++HC(CH3)3-2 H] (9), 507 [M++H] (100), 489 (10), 477 (10), 404 
(10),282 (5), 225 (10), 115 (8), 104 (20), 87 (75). [α]D25=+24 (0.5 % DMSO). 

 
1-{6-{[1,3-Dihydroxy-2-(methyl)prop-2-yl]amino}-4-{[(2R,4S,5S)-5-

(dimethylamino)-4-(4-nitrophenyl)-1,3-dioxan-2-yl]methylamino}-s-triazin-
2-yl}-piperazine II-5a (71 %) yellowish crystalline powder, mp 118-123 °C (flash 
column chromatography, eluent ethanol : aq. NH3 25% 9:1 v/v). [Found: C 52.88, 
H 7.07, N 22.85; C24H37N9O6 (547.29) requires: C 52.64, H 6.81, N 23.02%]. Rf 
0.57 (90% ethanol/aq. NH3 25%). IR νmax (KBr) 3295 (s), 2932 (s), 2860 (s), 
1670 (m), 1548 (s), 1516 (s), 1444 (s), 1348 (s), 1296 (m), 1151 (m), 1113 (m), 
1055 (m), 1016 (m), 852 (m), 809 (m), 710 (m), 668 (w), 572 (w) cm-1. 1H NMR 
(500 MHz, [D6]DMSO, 353 K): δH 1.27 (3 H, s, CH3), 2.23 [6 H, s, N(CH3)2], 
2.69 (4 H, t, 3JH,H=4.8 Hz, H-3, -5 Piperazine), 2.86 (1 H, dd as t, 3JH,H=2.8 Hz, 
H-5-e D-NH), 3.496 (2 H, dd as t, 3JH,H=4.5 Hz, CH2NH), 3.504 (2 H, d, 
2JH,H=10.0 Hz, CH2OH), 3.58 (4 H, t, 3JH,H=5.3 Hz, H-2, -6 Piperazine), 3.60 
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(2 H, d, 2JH,H=10.5 Hz, CH2OH), 3.96 (1 H, dd, 2JH,H=12.5 Hz, 3JH,H=3.0 Hz, 
H-6-a D-NH), 4.46 (1 H, d, 2JH,H=12.0 Hz H-6-e), 4.66 (3 H, bs, OH, Pip-NH), 
4.99 (1 H, dd as t, 3JH,H=4.8 Hz, H-2-a D-NH), 5.18 (1 H, d, 3JH,H=3.5 Hz, H-4-a 
D-NH), 5.55 (1 H, s SER-NH), 6.27 (1 H, bdd as bt, 3JH,H=5.5 Hz D-NH), 7.64 
(2 H, d, 3JH,H=8.5 Hz, H-2, -6 p-NPh), 8.16 (2 H, d, 3JH,H=8.5 Hz, H-3, -5 p-NPh) 
ppm; 13C NMR (125 MHz, [D6]DMSO, 298 K): δC 19.3 (1 C, CH3), 43.8 [2 C, 
N(CH3)2], 44.4 (2 C, C-3, -5 Piperazine), 45.87, 45.94, 46.03 (3 C, C-2, -6 
Piperazine, CH2NH), 58.0 (1 C, C-2 SER-NH), 58.5, 58.6 (1 C, C-5 D-NH), 
64.4, 64.5, 64.6 (2 C, CH2OH), 64.88, 64.92, 65.3 (1 C, C-6 D-NH), 80.1, 
80.2 (1 C, C-4 D-NH), 99.8, 99.9 (1 C, C-2 D-NH), 123.19, 123.24 (2 C, C-2,  
-6 p-NPh), 127.0 (2 C, C-3, -5 p-NPh), 146.7 (1 C, C-1 p-NPh), 148.9 (1 C, C-4 
p-NPh), 164.7 (1 C, C-2 s-triazine), 165.9 (2 C, C-4, -6 s-triazine) ppm. MS 
(ESI+), m/z (rel. Int. %) 548.3 [M++H] (100), 543.3 (8), 295.2 (10), 217.1 (15), 
154.1 (10), 120.1 (3). [α]D25= +145 (0.5 % DMSO). 

 
1-{6-{[1-Hydroxy-2-(hydroxymethyl)but-2-yl]amino}-4-{[(2R,4S,5S)-5-

(dimethylamino)-4-(4-nitrophenyl)-1,3-dioxan-2-yl]methylamino}-s-tri-azin-2-
yl}-piperazine II-5b (67 %) yellowish crystalline powder, mp 112-118 °C (flash 
column chromatography, eluent ethanol : aq. NH3 25% 9:1 v/v). [Found: C 53.55, 
H 7.17, N 22.22; C25H39N9O6 (561.30) requires: C 53.46, H 7.00, N 22.45%]. 
Rf 0.70 (90% ethanol/aq. NH3 25%). IR νmax (KBr) 3392 (s), 2939 (s), 2856 (s), 
1553 (s), 1514 (s), 1446 (s), 1348 (s), 1298 (m), 1151 (m), 1113 (m), 1055 (s), 
1011 (m), 852 (m), 710 (m), 573 (w) cm -1. 1H NMR (500 MHz, [D6]DMSO, 353 K): 
δH 0.79, 0.80 (3 H, 2×t, 3JH,H = 7.5 Hz, CH3), 1.80, 1.81 (2 H, 2×q, 3JH,H=7.5 Hz, 
CH2CH3), 2.23 [6 H, s, N(CH3)2], 2.70 (4 H, t, 3JH,H=4.8 Hz, H-3, -5 Piperazine), 
2.86 (1 H, dd as t, 3JH,H=2.3 Hz, H-5-e D-NH), 3.50 (2 H, dd as t, 3JH,H=4.5 Hz, 
CH2NH), 3.51-3.62 (8 H, m, CH2OH, H-2, -6 Piperazine), 3.96 (1 H, dd, 
2JH,H=12.5 Hz, 3JH,H=3.0 Hz, H-6-a D-NH), 4.46 (1 H, d, 2JH,H=12.5 Hz, H-6-e 
D-NH), 4.68 (3 H, bs, OH, Pip-NH), 4.99 (1 H, dd as t, 3JH,H = 4.8 Hz, H-2-a 
D-NH), 5.18 (1 H, d, 3JH,H=3.0 Hz, H-4-a D-NH), 5.46 (1 H, s SER-NH), 6.29 
(1 H, bdd as bt, 3JH,H=5.5 Hz D-NH), 7.64 (2 H, d, 3JH,H=8.5 Hz, H-2, -6 p-NPh), 
8.16 (2 H, d, 3JH,H=9.0 Hz, H-3, -5 p-NPh) ppm; 13C NMR (125 MHz, [D6]DMSO, 
298 K): δC 8.3 (1 C, CH3), 23.5, 23.6 (1 C, CH2CH3), 43.8 [2 C, N(CH3)2], 44.3 
(2 C, C-3, -5 Piperazine), 45.8, (3 C, C-2, -6 Piperazine, CH2NH), 58.6 (1 C, C-5 
D-NH), 60.4 (1 C, C-2 SER-NH), 62.8, 63.4 (1 C, C-6 D-NH), 64.5 (2 C, CH2OH), 
80.1, 80.3 (1 C, C-4 D-NH), 99.8, 100.1 (1 C, C-2 D-NH), 123.2 (2 C, C-2,  
-6 p-NPh), 127.0 (2 C, C-3, -5 p-NPh), 146.7 (1 C, C-1 p-NPh), 148.93, 148.95 
(1 C, C-4 p-NPh), 164.7 (1 C, C-2 s-triazine), 165.9, 166.0 (2 C, C-4, -6 s-triazine) 
ppm. MS (ESI+), m/z (rel. Int. %) 562.3 [M++H] (100), 548.3 (10), 302.2 (15), 
281.7 (25), 208.0 (13), 143.1 (7). [α]D25=+136 (0.5 % DMSO). 

 
1-{6-{[1,3-Dihydroxy-2-(hydroxymethyl)prop-2-yl]amino}-4-{[(2R,4S,5S)-

5-(dimethylamino)-4-(4-nitrophenyl)-1,3-dioxan-2-yl]methylamino}-s-triazin-
2-yl}-piperazine II-5c (81 %) yellowish crystalline powder, mp 140-145 °C (flash 



OANA MOLDOVAN, PEDRO LAMEIRAS, ERIC  HENON, FLAVIA POPA, AGATHE MARTINEZ, ET ALL 
 
 

 58 

column chromatography, eluent ethanol : aq. NH3 25% 9:1 v/v). [Found: C 50.98, 
H 6.77, N 22.55; C24H37N9O7 (563.28) requires: C 51.15, H 6.62, N 22.37%]. 
Rf 0.57 (90% ethanol/aq. NH3 25%). IR νmax (KBr) 3298 (s), 2940 (s), 2858 (s), 
1551 (s), 1515 (s), 1446 (s), 1347 (s), 1297 (m), 1151 (m), 1112 (m), 1054 (m), 
1015 (m), 852 (m), 809 (m), 710 (w), 578 (w) cm-1. 1H NMR (500 MHz, 
[D6]DMSO, 353 K): δH 2.23 [6 H, s, N(CH3)2], 2.69 (4 H, t, 3JH,H=4.8 Hz, H-3, 
-5 Piperazine), 2.86 (1 H, dd as t, 3JH,H=2.8 Hz H-5-e.), 3.50 (2 H, dd as t, 
3JH,H=4.8 Hz, CH2NH), 3.57 (4 H, t, 3JH,H=4.3 Hz, H-2, -6 Piperazine), 3.66 
(6 H, s, CH2OH), 3.97 (1 H, dd, 2JH,H=12.5 Hz, 3JH,H=3.0 Hz, H-6-a D-NH), 
4.46 (1 H, d, 2JH,H=12.5 Hz H-6-e D-NH), 4.65 (3 H, bs, OH), 5.00 (1 H, dd as t, 
3JH,H=4.5 Hz, H-2-a D-NH), 5.19 (1 H, d, 3JH,H=3.0 Hz, H-4-a D-NH), 5.53 (1 H, 
s SER-NH), 6.38 (1 H, bs D-NH), 7.64 (2 H, d, 3JH,H=8.5 Hz, H-2, -6 p-NPh), 
8.17 (2 H, d, 3JH,H=8.5 Hz, H-3, -5 p-NPh) ppm; 13C NMR (75 MHz, [D6]DMSO, 
298 K): δC 43.7 [2 C, N(CH3)2], 44.3 (2 C, C-3, -5 Piperazine), 45.8, 46.1, 46.3 
(3 C, C-2, -6, Piperazine, CH2NH), 58.4 (1 C, C-5 D-NH), 61.3, 61.4 (1 C, C-2 
SER-NH), 64.3 (3 C, CH2OH), 65.3 (1 C, C-6 D-NH), 80.0 (1 C, C-4 D-NH), 
99.6 (1 C, C-2 D-NH), 123.1 (2 C, C-2, -6 p-NPh), 126.9 (2 C, C-3, -5 p-NPh), 
146.5 (1 C, C-1 p-NPh), 148.8 (1 C, C-4 p-NPh), 164.4 (1 C, C-2 s-triazine), 
165.8 (2 C, C-4, -6 s-triazine) ppm. MS (DCI positive, 200 eV, isobutane), m/z 
(rel. Int. %) 620 [M++HC(CH3)3-2 H] (5),564 [M++1] (65), 449 (28), 380 (55), 
300 (10), 282 (15), 221 (5), 178 (100), 165 (25), 148 (10), 104 (45), 87 (35). 
[α]D25=+137 (0.5 % DMSO). 
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ABSTRACT. The relationship between energy calculations and boiling points 
was studied on a set of fourteen n-alkanes. The correlation analysis clearly 
showed that the best relationship is not linear. The regression analysis showed 
that a dose-response logistic function provided a very good agreement between 
the boiling points of alkanes and their heat of formation. 
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INTRODUCTION  
Boiling point, the temperature at which the vapor pressure of the liquid 

equals the environmental pressure surrounding the liquid [1], of organic 
compounds is an important property since it can provide information about 
other physical properties and structural characteristics [2]. Molecules with 
strong intermolecular forces are known to have higher boiling points [2].  

The boiling point of alkanes, chemical structures with a CnH2n+2 
generic formula, increases with the chain length (number of carbon atoms).  

The relationship between the boiling points of alkanes and other 
properties or descriptors have previously been studied using simple or multiple 
linear regression models [3-5] or non-linear models [6]. Since the boiling 
point of alkanes is determined by their molecular weight, this property shows a 
linear relationship with the size of the molecules [7]. Kozioł obtained, on a 
set of fourteen n-alkanes, a non-linear model with five descriptors having a 
determination coefficient of 0.9993 [6]. Moreover, simple exponential models 
estimated the critical temperature, pressure, and volume of alkanes as function 
of the normal boiling point and molecular weight [8]. 

The present study is aimed to carry out correlation and regression 
analyses in order to establish the relationships between the calculated energy 
and the boiling points of n-alkanes (an "easy to predict" property). 
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RESULTS AND DISCUSSION 
The results of the correlation analyses are presented in Table 1. 

The dipole moment property was excluded from further analyses since the 
Pearson correlation coefficient was of -0.0391. The analysis of the obtained 
correlation coefficients revealed that Spearman and Gamma correlation 
coefficients had higher values compared to the Pearson correlation coefficients. 

 
Table 1. Results of correlation analysis 

X (Y= boiling point) r (p) ρ (p) Γ (p) 
heat-of-formation 0.9515958 (1.67·10-7) 1* 1* 
scf-binding-energy 0.9499073 (2.05·10-7) 1* 1* 
total-energy 0.9498675 (2.06·10-7) 1* 1* 
scf-atom-energy 0.9498641 (2.06·10-7) 1* 1* 
scf-electronic-energy 0.9060543 (8.09·10-6) 1* 1* 
scf-core-energy 0.8992529 (1.21·10-5) 1* 1* 
dipole-moment -0.0391090 (0.8943) 0.0681 (0.8094) 0.0989 (0.9618) 
Correlation coefficients: r = Person; ρ = Spearman; Γ = Gamma 
* p <  10-7; 

 

The 0.9515958 value of the Pearson correlation coefficient revealed 
that the linear relationship with the heat of formation was able to explain almost 
91% of boiling points variation of the studied n-alkanes, which is a good 
estimation. Since the Spearman correlation coefficient was equal to the Gamma 
correlation coefficient and both of them were higher than the Pearson correlation 
coefficient, the relationship between boiling points and energy calculations 
could be non-linear. 

Non-linear regression analysis was carried out in order to identify the 
type of relationship between the boiling points of alkanes and energy calculations. 
The best performing models, in terms of determination coefficients, F-value and 
coefficient significance proved to be of the dose-response logistic function 
type. The top three models in terms of the above-presented criteria are shown 
in Table 2. 

The analysis of the results in Table 2 revealed that the best performing 
model, able to explain the boiling points of alkanes (as estimator) used the 
heat of formation (as predictor, H_F) through a dose-response logistic function. 
As it can be observed, a four-variable equation was able to fully predict the 
variation of boiling points as function of the heat of formation. The smallest 
difference between the determination coefficient and the adjusted determination 
coefficient was obtained using the first equation (boiling point as function of 
the heat of formation). The smallest value of the standard error was of 0.33°C 
and provided by the first equation (boiling point as function of the heat of 
formation). Note that the highest t-values associated to the coefficients and 
the smallest values of the standard errors were obtained when the boiling 
points were investigated as function of the heat of formation. 
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Table 2. Regression analysis results 

Type 
Y X r2 r2

adj 
F 

(FitStErr) C Value [95%CI] StErr t 

DoseRspLgstc Ŷ = a0+a1/(1+(x/a2)^a3) 
a0 1142.31 [1111.59; 1173.03] 13.78 82.85 
a1 -1435.64 [-1470.43; -1400.85] 15.61 -91.94 
a2 -191.47 [-200.82; -182.11] 4.20 -45.59 

B_P H_F 0.999997 0.999996 1090130
(0.32797)

a3 0.7518 [0.7386;  0.7656] 0.01 121.71 
a0 -324.89 [-367.34; -282.43] 19.06 -17.05 
a1 1836.08 [1332.98; 2339.17] 225.80 8.13 
a2 -179833.96 [-305299; -54369] 56313 -3.19 

B_P T_E 0.999864 0.999823 24478
(2.18849)

a3 -0.6190 [-0.7225; -0.5155] 0.046 -13.32 
a0 -359.58 [-416.26; -302.91] 25.44 -14.14 
a1 1925.18 [1315.38; 2534.99] 273.70 7.03 
a2 -14657.09 [-26730; -258] 5418.9 -2.70 

B_P SBE 0.999857 0.999814 23351
(2.24065)

a3 -0.5950 [-0.7137; -0.4764] 0.0532 -11.15 
DoseRspLgstc = dose-response logistic function; 
B_P = boiling point; H_F = heat-of-formation; T_E = total-energy; SBE = scf-binding-energy; 
r2 = determination coefficient; r2

adj = adjusted determination coefficient; F = F-value;  
C = coefficient; 95%CI = 95% coefficient confidence interval; StErr = standard error;  
t = t-value 
 

The graphical representation of the best performing model (B_P^= 
(1142.31±30.72)-(1435.6±34.79)/(1+(H_F/(-191.47±9.35))(0.7518±0.0132))) is presented in 
Figure 1. 
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Figure 1. Boiling points of alkanes as heat of formation function 
 
The analysis of Figure 1 revealed that the identified dose-response 

logistic function is the best one in estimating the relationship between the heat 
of formation and the boiling points of the studied n-alkanes. This statement 
is also supported by the value of the correlation coefficient associated to 
the model (see Table 2). A statistically significant linear relationship could 
also be identified between boiling points and the heat of formation, but this 
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relationship had lower performances compared to the best scoring dose-
response logistic function (r2 = 0.9062, F = 116, p = 1.6·10-7, standard error 
of estimated = 52.44).  

The estimated boiling points when the first equation was used (boiling 
point as function of the heat of formation), abbreviated as B_P^, and the 
measured boiling points, abbreviated as B_P, is graphically presented in 
Figure 2. 

 

R2 = 0.999997

-200

-100

0

100

200

300

400

500

-200 -100 0 100 200 300 400 500

Σ|B_P-B_P^|=3.18°C

Avg(|B_P-B_P^|)=0.23°C

R2 = 0.999997

-200

-100

0

100

200

300

400

500

-200 -100 0 100 200 300 400 500

Σ|B_P-B_P^|=3.18°C

Avg(|B_P-B_P^|)=0.23°C

 
 

Figure 2. Estimated (horizontal) versus measured (vertical) boiling points  
using the dose-response logistic function 

 

The validity and reliability of the best performing relationship obtained 
in the study on n-alkanes is supported by the smallest value of the absolute 
value of residuals (equal to 0.23°C) and by the sum of the absolute difference 
of residuals (equal to 3.18°C) (Figure 2). Moreover, the sum of residuals 
was 0.01°C while the squared sum of residuals was 1.08. 

The objective of this research was met as soon as the best model 
able to estimate the boiling points of alkanes as functional dependence on 
energy calculations was identified. The value of the Person correlation 
coefficient, which proved to be smaller in comparison to the Spearman and 
Gamma correlation coefficients, determined the investigation of non-linear 
relationships even if the linear relationship was statistically significant. A 
dose response logistic function proved to better explain the boiling points 
as function of energy calculations for the studied n-alkanes when the 
molecules were prepared for analysis by applying the mm+ as molecular 
mechanics and the AM1 as semi-empirical method. 
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CONCLUSIONS 
If ρ2(Spearman), Γ2(Gamma) >r2(Pearson), the relationship between 

variables is not linear; non-linear relationships must always be checked. 
Thus, the best performing relationship between boiling points and the energy 
calculations of the investigated n-alkanes was expected not to be linear. 

A functional dependence was identified between boiling points and 
the energy calculations of the investigated n-alkanes. This functional dependence 
proved to be a dose-response logistic function when mm+ molecular mechanics 
and AM1 semi-empirical methods were used to prepare the studied n-alkanes 
for analysis.   

The following model was identified as the model with the highest 
performance:  

B_P^ = (1142.31±30.72)-(1435.6±34.79)/(1+(H_F/(-191.47±9.35))(0.7518±0.0132)), 
where B_P^ is the estimated boiling point and H_F is the heat of 

formation. The validity of the model is supported by the small value of the 
standard error, the high F-value and the small p-value.  
 
EXPERIMENTAL SECTION 

Fourteen normal alkanes (C1-C12, C20, C30), chemical compounds 
consisting of carbon and hydrogen elements, were analyzed (see Table 3).  
 

Table 3. Characteristics of alkanes: boiling point, dipole-moment,  
total-energy, atom-energy, binding-energy, core-energy, 

 electronic-energy, and heat-of-formation 

Name Formula B_P D_M T_E SAE SBE SCE SEE H_F 
Methane CH4 -164 1.12·10-6 -4225 -3837 -388 4619 -8844 -9 
Ethane C2H6 -89 6.87·10-7 -7821 -7149 -672 13638 -21459 -18 
Propane C3H8 -42 4.28·10-3 -11415 -10461 -954 26313 -37727 -24 
Butane C4H10 -0.5 1.01·10-7 -15008 -13773 -1236 41607 -56615 -31 
Pentane C5H12 36 6.28·10-3 -18602 -17084 -1518 59034 -77636 -38 
Hexane C6H14 69 3.06·10-7 -22196 -20396 -1800 78191 -100387 -45 
Heptane C7H16 98 6.57·10-3 -25790 -23708 -2082 98835 -124624 -52 
Octane C8H18 125 1.52·10-7 -29383 -27020 -2364 120757 -150141 -59 
Nonane C9H20 151 6.65·10-3 -32977 -30331 -2646 143819 -176796 -66 
Decane C10H22 174 3.95·10-7 -36571 -33643 -2928 167892 -204463 -73 
Undecane C11H24 196 8.13·10-3 -40165 -36955 -3210 192888 -233052 -80 
Dodecane C12H26 216 1.35·10-7 -43758 -40267 -3492 218724 -262482 -86 
Eicosane C20H42 343 8.61·10-7 -72508 -66760 -5748 449165 -521673 -142 
Triacontane C30H62 450 1.59·10-6 -108445 -99878 -8567 779447 -887893 -210 

B_P = boiling point; D_M = dipole-moment; T_E = total-energy;  
SAE = scf-atom-energy; SBE= scf-binding-energy; SCE = scf-core-energy;  
SEE = scf-electronic-energy; H_F = heat-of-formation. 
 



LORENTZ JÄNTSCHI, SORANA D. BOLBOACĂ 
 
 

 66 

Eight properties of the above-mentioned alkanes were investigated: 
boiling point [°C] [9], total-energy (T_E) [kcal/mol], dipole-moment (D_M) 
[Debyes], scf-atom-energy (SAE) [kcal/mol], scf-binding-energy (SBE) [kcal/mol], 
scf-core-energy (SCE) [kcal/mol], scf-electronic-energy (SEE) [kcal/mol], 
and heat-of-formation (H_F) [kcal/mol]. Except for the boiling points, all the 
other properties were calculated with HyperChem v. 8.0 using the following 
criteria: optim-converged=true, molecular mechanics method: mm+ [10], 
and semi-empirical method: AM1 [11]. 

Correlation and regression analyses were carried out in order to 
meet the objective of the study. Pearson (“r”) [12], Spearman (“ρ”) [13] and 
Gamma (“Γ”) [14] correlation coefficients were used to find the power and the 
sign of the relationship between boiling points and the investigated properties.  

Regression analyses were carried out with the SlideWrite Plus software. 
The following possibilities of regression search were used:  
 Linear: ▪ Linear Group; ▪ Exponential Group; ▪ Power Group; ▪ Polynomial 

Group. 
 Nonlinear: 

o Standard: ▪ User-Defined (any function defined by the user);  
▪ Exponential – Y=a0+a1*exp(-x/a2); ▪ Power - Y=a0+a1*x^a2. 

o Transitional: ▪ 1-Site Ligant – Y=a0*x/(a1+x);  
▪ Cumulative – Y=a0+a1*0.5*(1+erf((x-a2)/√(2)*a3));  
▪ DoseRspLgstc - Y=a0+a1/(1+(x/a2)^a3);  
▪ Photosynthesis - Y=a0*a1*x/(a0+a1*x);  
▪ PH Activity – Y=(a0+a1*10^(x-a2))/(1+10^(x-a2)); 
▪ Sigmoidal – Y=a0+a1/(1+exp(-(x-a2)/a3)). 

o Peak: ▪ Erfc Peak, Gaussian – Y=a0+a1*exp(-0.5*((x-a2/a3)2);  
▪ Logistic Peak – Y=a0+a1*4* (exp(-(x-a2)/a3))/(1+exp(-(x-a2)/a3))2;  
▪ Log-Normal – Y=a0+a1*exp(-0.5*(ln(x/a2)/a3)2);  
▪ Lorentzian – Y=a0+a1/(1+((x-a2)/a3)2). 

o Waveform: ▪ SineWave – Y=a0+a1*sin(2*pi*x/a3+a2);  
SineWaveSquared – Y=a0+a1*(sin(2*pi*x/a3+a2))2 

 User-Defined: allows to define any equation with a maximum of 7 
coefficients. 
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ABSTRACT. A diagnostic test for a qSPR (quantitative Structure-Property 
Relationship) model was carried out using a series of statistical indicators for 
correctly classifying compounds into actives and non-actives. A previously 
reported qSPR model, able to characterize the aqueous solubility of drug-like 
compounds, was used in this study. Eleven statistical indicators like those 
used in medical diagnostic tests were defined and applied on training, test and 
overall data sets. The associated 95% confidence interval under the binomial 
distribution assumption was also computed for each defined indicator in order 
to allow a correct interpretation. Similar results were obtained in the training 
and test sets with some exceptions. The prior probabilities of active and non-
active compounds proved not to be significantly different in the training and 
test sets. However, the probability of classification as active compounds 
proved to be significantly smaller in the training set as compared to the test set 
(p = 0.0042). The total fraction of correctly classified compounds proved to be 
identical in the training and test sets as well as in the overall set. Nevertheless, 
the overall model and the model obtained in the test set show a higher ability 
to correctly assign the non-active compounds to the non-active class while the 
model obtained in the training set has a higher ability to correctly assign the 
active compounds to the active class. 
 
Keywords: quantitative Structure-Property Relationships (qSPR), diagnostic 
parameters, 2×2 contingency table, solubility, drug-like compounds 

 
 
 
INTRODUCTION  

Quantitative structure-property relationships (qSPRs) procedures able 
to quantitatively correlate the chemical structure with a defined property [1], are 
widely used in drug design [2,3], drug classification [4,5] and screening [5,6]. 

A series of studies were drawn in order to establish the validation 
methods of a qSPR model [7,8], including the principle of parsimony, selection of 
the simplest model, cross-validation, Y scrambling and external predictability [9]. 
Various procedures for variable selection have been created [10-13] and statistical 
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analysis of molecular similarity matrices was developed in order to identify the 
best quantitative structure-activity relationships [14]. Reliability and accuracy have 
also been introduced for the validation of QSPR models [15,16]. The information 
criteria (Akaike’s information criteria - AIC [17], corrected AIC [18], Schwarz (or 
Bayesian) Information Criterion – BIC, Amemiya Prediction Criterion – APC, 
and Hannan-Quinn Criterion - HQC) and Kubinyi’s function [19, 20] are the 
parameters used to compare different qSPR/qSAR models [21-23]. 

The aim of this study was to carry out a diagnostic test on a qSPR 
(quantitative Structure-Property Relationships) model, by using a series of 
statistical indicators for correctly classifying compounds into actives and 
non-actives. 
 
RESULTS AND DISCUSSION 

Eleven statistical indicators were proposed as diagnostic parameters 
for qSPR models. The contingency tables used to calculate these parameters 
are presented in Table 1. The statistical indicators computed for the training, 
test and overall data sets are presented in Table 2 – 4. 
 

Table 1. 2×2 contingency tables for the investigated qSPR model 

Generic Table Observed Test Set Observed 
Estimated + - Σ Estimated + - Total 

+ TP FP   + 26 10 36 
- FN TN   - 4 29 33 
Σ     n 

  

Total 30 39 69 
  

Training Set Observed Overall Observed 
Estimated + - Total Estimated + - Total 

+ 28 7 35 + 54 22 76 
- 12 48 60 - 11 77 88 

Total 40 55 95 

  

Total 65 99 164 

+ = active class; - = non-active class; 
Estimated = aqueous solubility estimated by Duchowitz’s et al. qSPR model 

 
The chi-squared test was applied on contingency tables in order to 

test the null hypotheses that the estimated class (active and non-active) is 
independent from the observed class (active and non-active). The value of 
the chi-squared statistics and associated significance level, presented at 
the bottom of Tables 2 - 4, supported the rejection of the null hypotheses 
that the estimated classification into active and non-active compounds is 
unrelated to the observed classification. These results sustain the ability of 
the qSPR model to classify compounds as actives and non-actives. The 
degree of association between the estimated and the observed classification of 
compounds proved to be a positive and moderate one, in all the investigated 
sets (training, test and overall set of studied compounds). The moderate 
association, expressed as the Φ contingency correlation coefficient, revealed 
that the reported qSPR [24] is not a perfect model. 
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Table 2. Statistical indicators for assessing the qSPR model: training set 
Parameter (Abbreviation) Value 95%CI 

Concordance / Accuracy / Non-error Rate (CC/AC) 80.00 [71.07-87.02] 
Error Rate (ER) 20.00 n.a. 
Prior proportional probability of an active class 0.4211 [0.3254-0.5215] 
Prior proportional probability of a non-active class 0.5789 n.a. 
Sensitivity (Se) 70.00 [54.76-82.39] 
False-negative rate (under-classification, FNR) 30.00 [17.61-45.24] 
Specificity (Sp) 87.27 [76.39-93.96] 
False-positive rate (over-classification, FPR) 12.73 [6.04-23.61] 
Positive predictivity (PP) 80.00 [64.55-90.44] 
Negative predictivity (NP) 80.00 [68.52-88.49] 
Probability of classification    
      - as active (PCA) 0.3684 [0.2766-0.4682] 
      - as non-active (PCIC) 0.6316 [0.5318-0.7234] 
Probability of a wrong classification   
      - as active compound (PWCA) 0.2000 [0.0956-0.3545] 
      - as non-active compound (PWCI) 0.2000 [0.1151-0.3148] 
Odds Ratio (OR) 16.0000 [5.7090-45.0262] 
 

95% CI = confidence interval at a significance level of 5%; n.a. = not available; 
χ2 = 30.2305 (p < 0.0001) (Chi-squared statistics); Contingency correlation coefficient Φ = 0.5641 

 

Table 3. Statistical indicators for assessing the qSPR model: test set 
Parameter (Abbreviation) Value 95%CI 

Concordance / Accuracy / Non-error Rate (CC/AC) 79.71 [69.04-87.79] 
Error Rate (ER) 20.29 n.a. 
Prior proportional probability of an active class 0.4348 [0.3225-0.5524] 
Prior proportional probability of a non-active class 0.5652 n.a. 
Sensitivity (Se) 86.67 [70.96-95.08] 
False-negative rate (under-classification, FNR) 13.33 [4.92-29.04] 
Specificity (Sp) 74.36 [59.21-85.91] 
False-positive rate (over-classification, FPR) 25.64 [14.09-40.79] 
Positive predictivity (PP) 72.22 [56.25-84.67] 
Negative predictivity (NP) 87.88 [73.29-95.52] 
Probability of classification    
      - as active (PCA) 0.5217 [0.4050-0.6367] 
      - as non-active (PCIC) 0.4783 [0.3633-0.5950] 
Probability of a wrong classification   
      - as active compound (PWCA) 0.2778 [0.1533-0.4375] 
      - as non-active compound (PWCI) 0.1212 [0.0448-0.2671] 
Odds Ratio (OR) 18.8500 [5.4919-64.5994] 
 

95% CI = confidence interval at a significance level of 5%; n.a. = not available; 
χ2 = 22.9206 (p < 0.0001) (Chi-squared statistics); Contingency correlation coefficient Φ = 0.5764 

 

The accuracy of the qSPR model proved to be almost 80% in all the 
investigated sets of compounds. The accuracy of the model in the training 
set proved not to be statistically different from the accuracy of the model in 
the test set (the confidence intervals overlap, see Tables 2 and 3). A similar 
interpretation is true when the values and associated confidence intervals 
of other statistical indicators are analyzed (see Tables 2 -4). 



SORANA D. BOLBOACĂ, LORENTZ JÄNTSCHI 
 
 

 72 

Table 4. Statistical indicators for assessing the qSPR model: overall set 
Parameter (Abbreviation) Value 95%CI 

Concordance / Accuracy / Non-error Rate (CC/AC) 79.88 [73.22-85.43] 
Error Rate (ER) 20.12 n.a. 
Prior proportional probability of an active class 0.3963 [0.3238-0.4725] 
Prior proportional probability of an non-active class 0.6037 n.a. 
Sensitivity (Se) 83.08 [72.50-90.55] 
False-negative rate (under-classification, FNR) 16.92 [9.45-27.50] 
Specificity (Sp) 77.78 [68.82-85.05] 
False-positive rate (over-classification, FPR) 22.22 [14.95-31.18] 
Positive predictivity (PP) 71.05 [60.19-80.30] 
Negative predictivity (NP) 87.50 [79.26-93.06] 
Probability of classification    
      - as active (PCA) 0.4634 [0.3883-0.5398] 
      - as non-active (PCIC) 0.5366 [0.4602-0.6117] 
Probability of a wrong classification   
      - as active compound (PWCA) 0.2895 [0.1970-0.3981] 
      - as non-active compound (PWCI) 0.1250 [0.0694-0.2074] 
Odds Ratio (OR) 17.1818 [7.7989-38.1475] 
 

95% CI = confidence interval at a significance level of 5%; n.a. = not available 
χ2 = 83.6385 (p < 0.0001) (Chi-squared statistics); Contingency correlation coefficient Φ = 0.5761 

 
The Z test was applied in order to compare the statistical indicators 

expressed as probabilities obtained in training and test sets. The prior 
probabilities of active and non-active compounds proved not to be statistically 
different in training and test sets. The absence of statistically significant 
differences between prior probabilities of active and non-active compounds 
in training and test sets supports the correct assignment of compounds to 
the active/non-active sets. However, the probability of classification as active 
compounds proved to be statistically smaller in the training set compared to 
the test set (p=0.0042); thus, the classification model proved to perform better 
in terms of correct classification of active compounds when applied on test set.  

The objective of this study is to propose a series of statistical indicators 
as diagnostic tools for the qSPR model. In achieving this, various aspects are 
considered: 
 Analyzing the correct assignment of compounds to training and test 

sets: prior proportional probability of an active class & prior proportional 
probability of a non-active class 

 Analyzing the correct classification of active and non-active compounds: 
all the other statistical indicators (see Table 2-4). 

The proposed statistical indicators have to assess the qSPR model 
in training and test sets: as the indicators have similar performances in 
training and test sets, it could involve the model has similar classification 
abilities, thus being considered as a good model. The best model is the one 
with the highest possible accuracy and the smallest possible error rate. The 
best model is also the one with the highest sensitivity and specificity and the 
smallest false-negative and false-positive rates. In this respect, it can be observed 
that sensitivity is smaller than specificity in the training set while sensitivity is 
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higher than specificity in the test set (see Tables 2 and 3). In other words, the 
investigated qSPR model has a higher ability to correctly assign active 
compounds to the active class in the test set and a higher ability to correctly 
assign non-active compounds to the non-active class in the training set. An 
excellent classification model should also have the best possible positive and 
negative predictability values while the probability values of a wrong classification 
into active and non-active compounds should have the smallest possible 
values. 

Similar statistical parameters are used to assess the performances 
of machine learning classification models: accuracy, recall (true positive rate, 
false positive rate, true negative rate, false negative rate, and precision) [25, 
26]. These parameters are calculated based on the confusion matrix [27]. 
Note that the confusion matrix is the same as the generic contingency table 
presented in Table 1. 

The present study is aimed to introduce a series of statistical indicators 
in order to diagnose a qSPR model. Useful information related to the assignment 
of compounds in the training and test sets could be obtained by using prior 
proportional probability of an active class & prior proportional probability of a non-
active class. All the other proposed statistical indicators allow the characterization 
of a qSPR model in terms of total fraction of correctly classified compounds 
(accuracy), correct assignment to active or non-active class (sensitivity and 
specificity, false positive and false negative rates), etc. Statistical indicators 
were applied on a 2×2 confusion matrix but the same approach could also be 
applied on r×c confusion matrices when compounds are classified into more 
than two groups (e.g., non-active, active, and very active). The usefulness of 
this approach in diagnosing qSPR/qSAR models is currently investigated in 
our laboratory. 
 
CONCLUSIONS 

The total fraction of compounds correctly classified by the qSPR 
model proved to be identical in the training and test sets as well as in the 
overall set. However, the overall model and the model obtained in the test 
set showed a higher ability to correctly assign the non-active compounds to 
the negative class while the model obtained in the training set had a higher 
ability to correctly assign the active compounds to the active class. 
 
EXPERIMENTAL SECTION 

A previously reported qSPR model [28] able to characterize the 
aqueous solubility of drug-like compounds was herein used. The experimental 
aqueous solubility measured at 298K and expressed in mg/ml (values taken 
from Merck Index 13th [28]) was modeled using molecular descriptors [24]. 

The best model obtained in the training set (n=97) proved to be a 
model with 3 descriptors and the following characteristics [24]:  
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R2 = 0.871; S = 0.903 
R2

loo = 0.849; Sloo = 0.971 
R2

val = 0.848; Sval  = 0.899 
where R2 = determination coefficient; S = standard deviation of the model; 
R2

loo = determination coefficient on leave one out analysis; Sloo = standard 
deviation on leave-one-out analysis; R2

val = determination coefficient on validation 
set; Sval = standard deviation on validation set. 

A series of statistical indicators similar with those used in medical 
diagnostic tests [29, 30] were defined as diagnostic parameters for the qSPR 
model (Table 5). 

The experimental and estimated aqueous solubility of the studied 
compounds was transformed as dichotomial variables in order to calculate 
the defined statistical indicators (Table 5) using the following criteria: if 
experimental data ≥ 0, the compound was considered active, if experimental 
data < 0, the compound was considered non-active. 

 
Table 5. Statistical indicators calculated on the 2×2 contingency table 

Indicator (Abbreviation) Formula Definition 
Accuracy / Non-error Rate (AC) 100*(TP+TN)/n Total fraction of correctly 

classified compounds  
Error Rate (ER) 100* (FP+FN)/n = 1-

CC 
Total fraction of misclassified 
compounds  

Prior proportional probability  
of a class (PPP) 

ni/n Fraction of compounds 
belonging to class i 

Sensitivity (Se) 100*TP/(TP+FN) Percentage of active 
compounds correctly assigned 
to the active class 

False-negative rate  
(under-classification, FNR) 

100*FN/(TP+FN) = 
1-Se 

Percentage of active 
compounds falsely assigned to 
the non-active class 

Specificity (Sp) 100*TN/(TN+FP) Percentage of non-active 
compounds correctly assigned 
to the non-active class 

False-positive rate  
(over-classification, FPR) 

100*FP/(FP+TN) = 
1-Sp 

Percentage of non-active 
compounds falsely assigned to 
the active class 

Positive predictivity (PP) 100*TP/(TP+FP) Percentage of compounds 
correctly assigned to the active 
class out of all compounds 
assigned to the active class 

Negative predictivity (NP) 100*TN/(TN+FN) Percentage of compounds 
correctly assigned to the non-
active class out of all 
compounds assigned to the 
non-active class 

Indicator (Abbreviation) Formula Definition 
Probability of classification  

- as active (PCA) 
 
(TP+FP)/n 
 

- Probability to classify a compound 
as active (true positive & false 
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- as inactive (PCIC) 

 
(FN+TN)/n 

positive) 
- Probability to classify a 
compound as non-active (true 
negative & false negative) 

Probability of a wrong classification 
- as active compound 

(PWCA) 
- as non-active compound 

(PWCI) 

 
FP/(FP+TP) 
 
FN/(FN+TN) 

 
Probability of a false positive 
classification 
Probability of a false negative 
classification 

Odds Ratio (OR) (TP*TN)/(FP*FN) The odds of correct 
classification in the group of 
active compounds divided to 
the odds of an incorrect 
classification in the group of 
non-active compounds 

 
The associated 95% confidence interval under the binomial distribution 

assumption [31] was also computed for the correct interpretation of the 
indicators [32]. 
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MODELING THE BIOLOGICAL ACTIVITY OF 
2-ARYL-THIAZOLE DERIVATIVES 

 
 

ERIKA TASNÁDIa, CRISTINA MOLDOVANb 
 
 

ABSTRACT A QSAR study on a set of biologically active molecules belonging 
to the class of 2-aryl-thiazole, using topological indices, is reported. The 
purpose of the study is to find the best regression model for prediction of 
two biological activities: anti-oxidant and anti-inflammatory ones. 

 
Keywords: QSAR, biological activity, prediction, regression analyses, 
correlation coefficient. 

 
 
 
INTRODUCTION 

Quantitative structure-activity relationship (QSAR) is the process by 
which chemical structures are quantitatively related with a well defined 
process, such as biological activity. The identification of the crucial factors 
involved in the relation structure-property is gained by the comparative analysis 
of a set of molecules. It is achieved with the help of topological descriptors 
and regression analysis, included in various algorithms. The topological 
characterization of the chemical structures allows their classification based 
on a similarity criterion.  

The 14 molecules taken in study show anti-oxidant and anti-inflammatory 
activity and belong to the class of 2-aryl-thiazole derivatives. Their anti-
inflammatory capacity was assessed by evaluating the acute phase bone 
marrow response, phagocytes’ activity and NO synthesis (see below). The 
antioxidant effect of the tested compounds was assessed by evaluating: the 
total antioxidant response (TAR), the total oxidant status (TOS) and the 
index of oxidative stress (OSI) [OSI=(TOS/TAR)x100]. 

Phagocytic activity was assessed with the in vitro phagocytosis test by 
calculating two parameters: the phagocytic index (PI) (PI% = phagocytes with 
at least one phagocyted germ from 200 leukocytes counted) and the phagocytic 
activity (PA) (PA = number of germs phagocyted by 100 leukocytes) [3-8].  

In acute inflammation there is a significant increase of NO synthesis 
due to the expression of iNOS (inducible nitric oxide synthesis). This will raise 
serum nitrates/nitrites concentration, as side metabolites of nitric oxide. 
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In order for a molecule to have anti-oxidant effect TAR should raise 
or TOS should drop, and if both parameters drop, TAR should drop less, or if 
both rise, TAR should raise more. In order to have anti-inflammatory effect IF, 
AF and NO should drop. 

The anti-inflammatory activity of the tested compounds was higher 
than that of Meloxicam, the drug taken as reference.  
 
METHOD 

The following procedure was used to find the best relationship between 
structures and the studied biological properties: 

• structures are optimized to find a minimum-energy (stable) configuration 
(PM3, HYPER CHEM version 7.52); 

• an index database is generated by using DRAGON 5.0 software and 
TOPOCLUJ software; 

• an exhaustive search to find the best equations (i.e., with the correlation 
coefficient (R) higher than 0.90), by STATISTICA 6.0, software;  
The molecules were designed by the aid of HYPER CHEM software. 

Geometry optimization was performed with the molecular mechanics method 
MM+, of the Polak-Ribiere conjugate gradient, at RMS lower than 0.009. 

The topological indices were calculated by DRAGON (1630 indices) 
and TOPOCLUJ (962 indices) software. From these indices, the ones showing 
the best correlation coefficient in monovariate regression against the biological 
activity were selected out. 

The statistical analysis was performed with STATISTICA software 
package, consisting in finding the best mono-, bi- and tri-variate regression 
equation, which can be further used to predict the biological activity of molecules 
belonging to the same class of those (2-aryl-thiazole derivatives) present in 
this study. 
 
RESULTS AND DISCUSSION 

Fourteen new 2-aryl-thiazole derivatives were synthesized by 
condensation between derivatives of 4-[2-(4-methyl-phenyl-thiazole-5-yl)-2-
oxo-ethoxy]-benzaldehyde and 2-, 3- or 4-(2-aryl-thiazole-4-ylmethoxy)-
benzaldehyde, and different carboxylic acid hydrazides.  

For these new structures five parameters were calculated, further used 
in this study, the goal being to find the best regression equation between 
chemical structure and biological activity.  

Table 1 presents the molecules from our set of study and the calculated 
parameters. 

 

The meaning of the five parameters illustrated in Table 1, are: IF = 
phagocytic index (phagocytes with at least one phagocyted germ from 200 
leukocytes counted); AF=phagocytic activity (number of germs phagocyted 
by 100 leukocytes); NO=nitric oxide (NO synthesis was evaluated measuring 



MODELING THE BIOLOGICAL ACTIVITY OF 2-ARYL-THIAZOLE DERIVATIVES 
 
 

 79 

nitrates/nitrites concentration); TAR=total antioxidant respons; TOS = total 
oxidant status. The first tree parameters are determined in case of an 
inflammatory process and the last two are used for testing antioxidant activity. 

 
Table 1. 2-aryl-thiazole derivatives and their properties 

Molecule Formula IF AF NO TOS TAR 
5b C31H26N4O3S2 16.57 

±1.51 
22.86 
±3.02 

577.49 
±96.07 

33.54 
±2.97 

1.0969 
±0.0026 

5c C31H23F3N4O3S2 22.57 
±2.76 

45.71 
±4.23 

595.8 
±38.61 

31.04 
±3.78 

1.097 
±0.004 

7b C29H23BrN4O2S2 34.57 
±5.13 

55.43 
±3.41 

1183.35 
±134.13 

27.62 
±2.03 

1.0978 
±0.0022 

7c C29H20BrF3N4O2S2 23.43 
±3.95 

32.28 
±4.07 

1121.64 
±123.65 

40.18 
±1.83 

1.103 
±0.003 

7e C29H20BrF3N4O2S2 31.14 
±4.74 

25.14 
±4.88 

558.92 
±72.49 

35.77 
±3.3 

1.0963 
±0.006 

7f C34H24BrN3O5S 15.86 
±3.29 

16.57 
±2.15 

580.35 
±72.28 

45.9 
±2.46 

1.0979 
±0.0023 

7h C29H23BrN4O2S2 29.43 
±4.12 

58.71 
±2.21 

1031.16 
±146.91 

27.27 
±3.52 

1.1018 
±0.0029 

7i C29H20BrF3N4O2S2 31 
±3.6 

73.28 
±4.5 

1228.8 
±120.04 

25.92 
±2.64 

1.104 
±0.0065 

7k C29H24N4O2S2 28.57 
±2.99 

42.28 
±4.23 

1192.44 
±49.95 

28.04 
±3.3 

1.0983 
±0.0007 

7l C29H21F3N4O2S2 16.57 
±1.51 

28.28 
±1.38 

888.45 
±155.09 

10.98 
±1.36 

1.0882 
±0.002 

7m C34H25N3O5S 30.86 
±2.54 

47.43 
±2.22 

662.32 
±142.95 

9.82 
±1.1 

1.0855 
±0.0047 

7o C29H24N4O2S2 27.43 
±5.09 

62.28 
±4.53 

1152.59 
±79.89 

26.66 
±2.83 

1.0989 
±0.0014 

7p C29H21F3N4O2S2 16 
±3.51 

19.14 
±2.54 

1257.04 
±157.09 

22.57 
±3.44 

1.0952 
±0.001 

7r C34H25N3O5S 26.28 
±4.82 

15.43 
±0.79 

1158.25 
±91.61 

20.35 
±0.69 

1.0992 
±0.0032 

 
We looked for the best regression equation in modeling all the five 

parameters; the best regression equations are listed in the following. 
Property: IF. 

Monovariate regression: 
y = 27.02+0.849×Mor13u 

           R = 0.8489;  s = 1.14;   F = 30.94 
Bivariate regression:       

y = 21.70-0.31×MATS3m+0.725×Mor13u 
           R = 0.8958; s = 2.68;   F = 22.35 
Trivariate regression: 
      y = 30.69-0.58×MATS3m-1.7×Mor13v+2.20×Mor13p 
           R = 0.9481; s = 2.73;   F = 29.64     
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Property: NO. 
Monovariate regression: 

y = 6564.2-0.89×TIC2 
           R = 0.8940; s = 139.58;   F = 47.79 
Bivariate regression:       

y = -9333.75-0.6×IC3+0.475×X[Sh[CfMax[Charge]]] 
            R = 0.9389; s = 112.03;   F = 40.91 
Trivariate regression: 

y =-22353.63+0.225×ATS4p-0.68×IC3+0.628×X[Sh[CfMax[Charge]]] 
              R = 0.9427; s = 113.87;   F = 26.61  

Property: AF. 
Monovariate regression: 

y = -14.33+0.77×R7p+ 
           R = 0.7703;  s = 12.25;   F = 17.51 
Bivariate regression:       
      y = -4.31+0.658×H2u-0.67×PDS8[Sh[D3D]] 
           R = 0.8829;  s = 9.42;     F = 19.44 
Trivariate regression: 

y = 101.94-0.55×E3u-0.54×PDS10[Sh[D3D]]+1.09×R7p+ 
           R = 0.9180; s = 8.35;     F = 17.85 

Property: TOS. 
Monovariate regression: 

y = -333.6+0.87×EEig10d 
           R = 0.8702;   s = 5.45;    F = 37.44 
Bivariate regression:       

y = -278.28+0.741×EEig10d-0.23×Mor10v 
           R = 0.8903;   s = 5.26;   F = 21.02 
Trivariate regression: 

y =134.52+0.15×RDF040m-0.4×RDF135u-0.35×WkOp[SzMinSzMax U] 
           R = 0.9473;   s = 7.23;   F = 6.03  
          Property: TAR.  
Monovariate regression: 

y = 1.22-0.88×GATS2v 
           R = 0.8818;   s = 0.003;   F = 41.93 
Bivariate regression:       

y = 0.96+0.562×EEig10d-0.49×Mor10v 
           R = 0.9355;   s = 0.002;   F = 38.59 
Trivariate regression: 

y = 0.96+0.58×EEig10d+0.566×Mor10v-1.00×Mor10v 
           R = 0.9550;   s = 0.002;   F = 34.54  

 

Considering that a biological activity is a multi-conditional response, the 
models showed a clear correlation between activity and molecular structure, 
particularly in bi-and tri-variate equations. The study needs to be continued to 
enlarge the data set for a better statistical significance.  
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CONCLUSION 
The class of 2-aryl-thiazoles is known for various biological activities, 

the anti-oxidant and anti-inflammatory included. The present article reported the 
modeling of these two bio-activities by using topological indices. Based on the 
regression models here presented we can predict the biological activity for 
molecules belonging to the same class and not included in the regression 
equation.    

This theoretical study stand as a support for further experiments in 
finding molecules with desired anti-oxidant and anti-inflammatory activity.  
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STRUCTURE BASED ALGORITHM FOR CLASSIFICATION OF 
MALEIMIDE DERIVATIVES ATP-COMPETITIVE INHIBITORS OF GSK-3 

 
 

LILIANA M. PĂCUREANUa, ALINA BORAa,  
LUMINIŢA CRIŞANa, LUDOVIC KURUNCZIb 

 
 

ABSTRACT. The structure based retrospective virtual screening algorithm 
employed the docking engine FRED (Fast Rigid Exhaustive Docking) to dock 
74 inhibitors (4-aryl-3-anilino-maleimide derivatives) and 1778 decoy molecules 
into glycogen synthase kinase-3 β, GSK-3β, ATP-binding site (PDB code 1Q4L).  

The input database of 74 ligands was prepared following the OpenEye 
protocol by adding tautomers and ionization states, generating conformers, 
and performing charge corrections with AM1BCC option from QUACPAC 
software. The protein preparation has been carried out with Chimera software 
by deleting water molecules (except water near Thr 138), adding hydrogen and 
charges (AM1BCC). The energy component values of the scoring functions were 
subsequently submitted to PLS-DA (Projections in Latent Structures, Discriminant 
Analysis). The final PLS-DA result contains only the essential energy factors that 
describe most accurately the interactions in the ATP binding site. The results 
obtained are of better quality than those obtained using the total scores 
provided by initial scoring functions in terms of AUC (Area Under Curve) 0.938 
(chemgauss2 donor + screenscore rotatable bonds) with respect to 0.887 
(chemgauss3). Moreover, the early enrichment of the PLS-DA term at 1% 
of the database is 13.514% while for Chemgauss 3 was only 8.108%. 

 
Keywords: molecular docking, Projections in Latent Structures - Discriminant 
Analysis (PLS-DA), glycogen synthase kinase-3β (GSK-3β) 

 
 
 
INTRODUCTION  

The identification of selective inhibitors of protein kinases by virtual 
screening strategies withdraw much interest in the area of drug discovery 
by helping in terms of time and money the high throughput screening (HTS) 
experiments [1]. GSK-3 is a serine/threonine protein kinase, discovered as the 
enzyme that inactivates the glycogen synthase (GS), the rate limiting enzyme 
in glycogen synthesis [2]. Besides glycogen metabolism regulation [2,3], GSK-
3 controls a large number of cellular processes such as microtubule stability [4],  
β-catenin degradation [5], protein translation [6], etc. 
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 Maleimide derivatives have been identified as ATP competitive inhibitors 
of GSK-3α at Smithkline Beecham pharmaceutical company by means of a 
high throughput screening experiment [7]. GSK-3 inhibition by maleimide 
derivatives caused the acceleration of glycogen synthesis in the liver suggesting 
the utility of maleimide inhibitors for the treatment of diabetes [3]. Moreover, 
additional biological investigations demonstrated that maleimide derivatives 
prevent neuronal death through a mechanism that involve, interactions with 
tau and β-catenin [8].  
 Structural characteristics of GSK-3 inhibitors have been investigated 
by various techniques including QSAR, docking and ligand based virtual 
screening [9,10,11,12,13,14,15]. 

Our investigation is directed towards a structure-based methodology 
due to the availability of X-ray cocrystal GSK-3β - maleimide derivative [16]. 
The high identity (similarity) of human GSK-3α and β 83% (89%) overall and 
91% (97%) of the catalytic domain [17] permitted us to use the X-ray stucture 
of GSK3 β to dock the maleimide inhibitors tested in GSK 3α [7]. The docking 
algorithm has to check that the chemical compounds make favorable interactions 
with the enzyme. Therefore, the set of inhibitors were mixed with a large number 
of inactives (decoys) in order to reproduce the real situation.  

Scoring functions, as they have been constructed, display a series of 
shortcomings, especially high false positive rates. Consensus scoring has been 
introduced to counterweight for false positive rates of individual scoring functions. 
But the selection algorithm for the right, individual scoring functions represents 
the major challenge [18]. Jacobsson et al.  [19] have used PLS-DA (Projections 
in Latent Structures - Discriminant Analysis) methodology to the total scores of 
individual scoring functions in order to improve the performance of individual 
scoring functions. In this paper we introduced the PLS-DA methodology [20] to 
the variables representing the components of individual scoring functions in 
order to get a new combination of terms that will rank more appropriately 
the actives with respect to inactives.  
 
 Dataset 

In our study, a dataset of 74 derivatives of 3-anilino-4-arylmaleimide [7] 
(Figure 1) and their biological activity, measured as inhibitory activity IC50 (nM) 
evaluated against human GSK 3α, is considered. Our dataset is assembled/ 
mixed with a decoy set of 1778 molecules (CDK-2 decoys) downloaded from 
DUD (Directory of Useful Decoys) [21].  

 
Figure 1. The template of maleimide derivatives (see ref 7): 

R = H, 2-Cl, 2-OMe, 2-NO2, 3-Cl, 3-OMe, 3-NO2, 4-Cl, 4-OMe, 4-NO2 
R1 = H, 3-Cl, 3-OH, 4-OH, 3-Cl-4OH, 3,5-diCl-4-OH, 3-CO2H, 4-Cl-3CO2H, 4-SMe 

R2, R3 = H, CH3 
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The CDK-2 decoys were chosen on the basis of high similarity of 
aminoacid binding sites (85%) of GSK-3 and CDK-2 [16]. In the current study 
we assume the decoys are inactive, even not experimentally tested on GSK-3. 
Therefore, they probably can be active on this target [21]. The distribution of 
drug-like properties of actives and decoys are shown in Table 1. 

 
Table 1. Drug-like properties of actives and decoys 

 
Molecular 

Weight 
Rotatable 

Bond 
Number 

Number of 
hydrogen bond 

donors 

Number of 
hydrogen bond 

acceptors 
MLOGP 

Actives      
min 264.3 0 2 4 -3.569 
max 575.68 12 5 12 2.773 
Decoys  
min 298.37 1 0 4 -5.974 
max 399.47 11 7 11 4.062 

 
 Protein preparation 

The crystal structure of GSK-3 β (PDB entry: 1Q4L) in complex with 
inhibitor 2-chloro-5-[[4-(3-chlorophenyl)-2,5-dioxo-pyrrol-3-yl]amino]benzoic 
acid was downloaded from the PDB. The active site of the enzyme was 
prepared using Chimera package [22] deleting water molecules except 
water near Thr 138, that was kept as it mediates the hydrogen bonds to Oγ 
of Thr138 and Oε2 of Gln185, [16] adding hydrogens and AM1BCC charges. 
 
 Assignment of ionization states and generation of tautomers 
 Database preparation before virtual screening analysis is important 
for the quality of the results. Kirchmaier demonstrated that tautomerism is 
essential for the classification of actives in virtual screening experiments [23]. 
The three-dimensional structures of 74 GSK-3α inhibitors were prepared using 
LigPrep 2.2 module of Maestro in the Schrödinger software [24]. For the 
ligands, the only reasonable tautomeric forms at pH=7.4±1.5 were selected.   
 
 Conformer generation 

Conformer generation for ligands and decoys was performed with 
Omega version 2.-2.3.2 from OpenEye package [25]. Biologically active 
fragment conformations are available in Omega's library. The ligand is split 
into fragments and next reassembled according to energetic criteria and the 
conformations complying with the energy window and heavy atom root mean 
square (RMS) distance were saved. We used an increment-based methodology 
for energy window of "5.0, 6.0, 7.0" kcal/mol, and RMS distance of the heavy 
atom coordinates for conformer detection of "0.5, 0.4, 0.3" Ǻ. The assignments 
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of appropriate atomic charges were carried out with QuacPac software [25], 
choosing AM1BCC option (AM1 bond charge correction). The resulting conformer 
enriched database of actives and decoys was used as input for docking.     
 
 Docking procedure 
 Docking investigation was carried out with FRED (Fast Rigid Exhaustive 
Docking) software version 2.2.5 (www.eyesopen.com) [25]. The docking 
procedure occurs in two steps: shape fitting and optimization. The ligand is 
placed into a 0.5Å resolution grid-box incorporating all active site atoms 
(including hydrogen atoms) using a smooth Gaussian potential [26]. To score 
the ligand in the docking procedure the binding site of GSK-3β was defined 
using the reference ligands and an addbox of 4Ǻ around the ligand. The best 
docked pose per each ligand was saved and seven classical scoring functions 
including Chemscore (CS), Chemgauss-2 (CG2), Chemgauss-3 (CG3), Shapegauss 
(SG), Screenscore (SC), OEChemscore (OECS), and PLP were used. 
 
 PLS-DA analysis 

In the present work, we attempted to implement a multivariate statistical 
method (PLS DA), with the values of scoring function components as descriptors, 
in order to classify the virtual screening results in active and inactive compounds 
[27]. PLS is a regression method that works with two matrices, X (e.g., chemical 
descriptors) and Y (e.g., biological responses), and has two objectives, namely 
to approximate well X and Y, and to model the relationship between them [28]. 
For PLS DA methodology two classes are defined: the actives (1) and the 
inactives (2) according to ligands and decoys.  

The energetic component outputs of all scoring functions (see reference 
[25]) were submitted to the SIMCA P 9.0 package [29] to perform initially a PCA 
(Principal Component Analysis) analysis [30], followed by the PLS DA analysis.  
 
RESULTS AND DISCUSSION 

In the first step of PLS DA analysis, a PCA model for the whole X matrix 
(N=1852 rows/compounds, and K=32 columns/energetic terms) was performed 
and three principal components were obtained. These three principal components 
explain 47.7% of the information content of the X matrix and distinguish 
very well the actives (in black) from the inactives (in red - Figure 2). 

The PLS DA models were further constructed starting from the same X 
matrix. In order to improve the PLS DA models, the coefficient sign and VIP >1 
(variable influence on projection) were considered as significant. Based on these 
criteria, six out of thirty two energetic terms were selected: CG2 Donor 
(Chemgauss2 contributions from donors on the ligand interacting with acceptors 
on the protein), CG3 Steric (Chemgauss3 steric interactions), CS HB (Chemscore 
hydrogen bonds), SC RB (Screenscore rotatable bond), SC Ambig (Screenscore 
ambiggous interactions), and SC HB (Screenscore hydrogen bonds). For these 
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six energetic terms, all the possible combinations were made and the first 
significant combination (CG2 Donor + SC RB) was selected. The sum of these 
terms represents the PLS-DA equal weight “mixed” scoring function.  

 

 
Figure 2. Classes of actives (in black) and  inactives (in red) 

 
In order to test the performance of the new “mixed” scoring function 

against classical scoring functions, the AUC and enrichment factors were 
compared. The results of ensemble AUC and enrichments are illustrated in 
Figure 3a and 3b.  

 
Figure 3.a) Bar chart showing AUC values obtained  

with seven classical and the new „mixed” scoring functions 
 
The AUC of 0.887 and enrichment factor of 8.108% at 1% of database 

show good performances of the classical CG3 at the beginning, but these 
results were surpassed by the corresponding values of  the “mixed” components 
(CG2 donor + SC RB) scoring functions AUC (0.938 and enrichment factor 
13.513 % at 1% of database for this combination).  
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Figure 3.b) Enrichment performances at 1%, 2%, 5%, 10% and 25% of the database 

 
Analyzing the classical CG2 and SC scoring functions, AUC is 0.735 

and respectively 0.459 while the enrichment factor is 0.011% / 0.011% by the 
top 1% database and show low performances, but the donor + rotatable bond 
components (CG2 Donor + SC RB) seems to be significant in this combination. 

The CG2 Donor energetic term into the “mixed” components scoring 
function measures the H-bond interaction energy between ligand and protein. 
The SC RB component is a penalty term proportional to the number of rotatable 
bonds in the ligand. SC RB is an important term in our situation since a number 
of compounds display a considerable number of flexible bonds in the decoys 
(up to 11) and ligands (up to 12).   

In the top 2% - 25% of the database, the number of detected actives 
increases and the largest percentage (93.243%) was retrieved at 25% in 
the case of new “mixed” scoring functions.   

 
CONCLUSIONS 
 Here we reported a promising workflow for structure-based virtual 
screening using rigid docking (FRED software) followed by PLS DA analysis. 
A new “mixed” scoring function was built. It collects the energy factors from 
different scoring functions that illustrate the particular interactions in the GSK3β 
site. In this way, the results here reported, are of better quality than those 
obtained by using every single scoring function available in the OpenEye 
package. The present study enabled us to indentify the optimal protocol for the 
highest enrichment of actives in the top 1% to 25% of the database for seven 
classical and one “mixed’ scoring function. Therefore, in the following studies the 
algorithm for docking scoring aiming at ranking the actives versus decoys will 
be based on all possible combinations. 
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KEKULÉ COUNT IN TUC4C8(R) NANOTUBES 
 
 

A. R. ASHRAFIa,*, P. NIKZADa, A. BEHMARAMb, H. YOUSEFI-AZARIb 
 
 

ABSTRACT. Counting Kekulé structures is a very difficult problem in chemical 
graph theory. Some recent techniques allowed to estimate the lower bound 
of this number in certain classes of graphs. In this note a formula for the 
number of Kekulé structures in TUC4C8(R) nanotube is given.  
 
Keywords: TUC4C8(R) nanotube, Kekulé structure. 

 
 
 
INTRODUCTION  

Kekulé structures (perfect matchings in graph theory) in benzenoid 
hydrocarbons are discussed in the famous book of Cyvin and Gutman [1]. In 
physics, the enumeration of Kekulé structures is equivalent to the dimer problem 
of rectangle lattice graph in the plane [2]. The Kekulé count of nanostructures 
has become interesting subjects of research. Close formulas for the Kekulé 
count have been obtained in [3-6].  

A graph G consist of a set of vertices V(G) and a set of edges E(G). 
In chemical graphs the vertices of the graph correspond to the atoms of the 
molecule and the edges represent the chemical bonds. The number of vertices 
and edges in a graph will be denoted by |V(G)| and |E(G)|, respectively.  

A matching of a graph G is a set M of edges of G such that no two 
edges of M share an end-vertex; further a matching M of G is perfect if any 
vertex of G is incident with an edge of M. The concept of perfect matching in 
graphs coincides with the Kekulé structure in organic chemistry. In this paper we 
focus our attention on the number of Kekulé structures in TUC4C8(R) nanotube 
and a close formula is established, see [7-15] for details. 

A C4C8 net is a trivalent decoration made by alternating rhombi C4 
and octagons C8. It can cover either a cylinder or a torus. In some research 
papers, some topological indices of TUC4C8(R/S) nanotubes and TC4C8(R/S) 
nanotori have been investigated [16-22].  

In this paper the TUC4C8(R)[p,q] = TU[p,q] nanotube is considered, 
where p and q are the number of octagons in each row and column, respectively. 
We explain the methods for computing the number of Kekulé structures in 
TU[p,q] and compute exact formula for the number of Kekulé structures in 
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some special case of TUC4C8(R) nanotubes, see Figure 1 ( notice that the 
edges in the left side are affixed to the vertex in the right side of the figure 
to gain a tube in this way).  

 
Figure 1. The chemical graph of TU[5,3]. 

 
MAIN RESULTS AND DISCUSSION 

The aim of this section is to compute the number of Kekulé structures in 
TU[p,q] = TUC4C8(R)[p,q] nanotubes. The edges of rhombus in the molecular 
graph of TU[p,q] are called the rhomboidal edges while the other edges are 
named octagonal.  

 

LEMMA 1. Consider the molecular graph of TU[p,1] = TUC4C8(R)[p,1] and 
E is a Kekulé structure of TU[p,1] containing a horizontal edge, Figure 2. 
Then c, d ∉ E and a, b ∈ E.  
 

 
Figure 2. The molecular graph of TU[4,1]. 

 

PROOF. If E contains one of c or d then vertices shown by (x) could not be 
select in the matching, a contradiction. So, we must have the following 
figure for the matching: 
 

 
Figure 3. A part of a Kekulé structure without edges c and d. 

 

By considering Figure 3 and the fact that in the upper selected 
rhomb, all the vertices must be covered, we have the following scheme for our 
Kekulé structure: 

 

 
Figure 4. A part of a Kekulé structure containing a horizontal edge. 

 

 This completes our argument.                                                        ▲ 
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Corollary. There are exactly two Kekulé structure containing a given horizontal 
edge. These are as follows: 
 

   
Figure 5. A part of two possible Kekulé structures containing a horizontal edge. 

 
Theorem 1. Suppose K(p,1) denotes the number of Kekulé structures in a 
TU[p,1] nanotube. Then we have: 

⎩
⎨
⎧

++++
+++++

= −−

−−

oddispp
evenispp

pK ppp

ppp
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)1,( 282422

482422

 

Proof. We first note there are 22p Kekulé structures when we consider only 
the rhomboidal edges of TU = TU[p,1], see Figure 6.  
 

 
Figure 6. Kekulé structure containing rhomboidal edges. 

 
 Clearly, each of the rhomboidal edge can take part to a Kekulé structure 
in two schemes. Since the number of rhombi is 2p, we have 22p different 
choice for the number of Kekulé structures. 
 We now apply Lemma 1, to enumerate the Kekulé structures containing 
at least one non-rhomboidal edge.  

 
Figure 7. A Kekulé structure containing non-rhomboidal edges. 

 
As it is shown in Figure 7, we have 2p − 4 rhombi, each of them 

belonging to two Kekulé structures and it is worth mentioning that this 
scheme can circulate in p situations. So, in this case we have p22p−4 Kekulé 
structures. Figure 8 shows a Kekulé structure when two of the octagonal 
edges in a row take part in matching. By lemma 1, we know that no two 
incident edges in a row may belong to a Kekulé structure. 

 

 
Figure 8. A Kekulé structure containing two of non-rhomboidal edges in a row. 
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At the end, we have a chain (Figure 9) that has two circulations for 
each of them. So we have 4 extra Kekulé structures, when p is even. 

 

 
Figure 9. The extra Kekulé structures, when p is even. 

 

 This completes our proof.                                                                ▲ 
 

Using a similar argument as Theorem 1, one can compute the 
number of Kekulé structures of TU[2,q]. 
 
Theorem 2. The number of Kekulé structure in TU[2,q] is .54 q×  
Proof. To calculate the number of Kekulé structure in TU[2,q], we first find a 
recursive equation for the number of Kekulé structures and then solve it. 
Suppose A(q) denotes the set of all Kekulé structures of TU[2,q] and xq is its 
size. From Figure 10, one can see that there are two types of Kekulé 
structures for TU[2,q] as follows: the first type Kekulé structures contain both e1 
and f1; the second type Kekulé structures are those without e1 and f1.  

Suppose L1 and L2 denote the number of Kekulé structures of the 
first and second types, respectively. Then from Figure 10, it can easily seen 
that L1 = 4xq−1. Suppose M is a Kekulé structure of the second type. Also, 
there are 4xq−2 Kekulé structures of the second type such that e2,f2 ∉ M. Continue 
this argument, we can see that xq = 4[xq−1 + xq−2 + … + x1]. To complete the 
proof, we must solve this recursive equation. To do this,  notice that xq−1 = 4[xq−2 + 
xq−3 + … + x1] and so xq − xq−1 = 4 xq−1. Therefore, xq = 5 × xq−1 which implies that 
xq = 5q−1 × x1. An easy calculation shows that x1 = 20 and so xq = 4 × 5q.              ▲ 
 

 
Figure 10. The Molecular Graph of TU[2,q]. 
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From Theorems 1 and 2, we can find an upper and lower bounds for 
the number of Kekulé structures of TU[p,q] as follows: 

Theorem 3. 2)54(
p

q×  ≤ K(p,q) ≤ pq )54( × . 
 
CONCLUSIONS 

In this paper a simple method enabling to compute the Kekulé 
structures of TUC4C8(R) nanotubes with a small number of rows or columns 
was presented. By this method an upper and lower bound for this number 
is also calculated. It is possible to extend our method in view of obtaining 
better bounds. 
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ON ESTRADA INDEX OF TWO CLASSES OF DENDRIMERS 
 
 

GHOLAM HOSSEIN FATH-TABARa, ALI REZA ASHRAFIa,  
ANTE GRAOVACb,c,d 

 
 
 

ABSTRACT. Suppose G = (V, E) is a graph. The sequence v1v2…vt(vt = v1) is 
called a closed walk with length t − 1 in G if vi's are in V(G) and vivi+1 ∈ E(G). 
In this paper, the number of closed walks with length k, Cw(G,k), for two 
classes of denderimers are computed. 

 
Keywords: Dendrimer, closed walk. graph spectrum, Estrada index. 

 
 
 
INTRODUCTION 

Dendrimers are polymeric macromolecules composed of multiple 
perfectly-branched monomers radially emanating from a central core, 
Figures 1, 2. The number of branching points increases upon moving from 
the dendrimer core to its surface and defines dendrimer generations. They 
are being investigated for possible uses in nanotechnology, gene therapy, 
and other fields [1-5]. 

In this paper, the word graph refers to a finite, undirected graph without 
loops and multiple edges. Suppose G is a graph. The vertices and edges of G 
are denoted by V(G) and E(G), respectively. A walk in G is an alternating 
sequence of graph vertices and edges such that any subsequent two edges 
are adjacent. A closed walk is a walk in which the first and the last vertices are 
the same. We encourage to the reader to consult papers [6-11] for background 
material, as well as basic computational techniques. Our notation is standard 
and mainly taken from the standard book of graph theory [12]. 

 
MAIN RESULTS AND DISCUSSION 

Let D1[n] and D2[n] be the molecular graphs of the dendrimers depicted 
in Figures 1 and 2, respectively. In this section, some formulas are derived for 
the number of closed walks of length k, Cw(G,k), where 1 ≤ k ≤ 10 and G is 
one of the molecular graphs D1[n] and D2[n]. For the sake of completeness, 
we mention here a well-known theorem in algebraic graph theory as follows: 
                                                            
a Department of Mathematics, Statistics and Computer Science, Faculty of Science,University of 

Kashan, Kashan 87317-51167, I. R. Iran 
b Faculty of Science, University of Split, Nikole Tesle 12, HR-21000, Split, Croatia 
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d IMC, University of Dubrovnik, Branitelja Dubrovnika 29, HR-20000 Dubrovnik, Croatia 
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THEOREM 1. Cw(D1[n], 2k−1) = 0 and Cw(D2[n], 2k−1) = 0. 
In the following theorems, the number of walks, of even length, are 

computed. 
THEOREM 2. Cw(D1[n] , 2)= 4 × 3n+1 − 4 and Cw(D2[n] , 2) = 2 × 3n+1 − 4. 

PROOF. Since for every graph G, Cw(G, 2) = 2m we have Cw(D1[n], 2) = 4 × 3n+1 − 4 
and Cw(D2[n] , 2) = 2 × 3n+1 − 4. 
 

   
Figure 1. The Forth Generation of 

Dendrimer Molecule D1[4] 
Figure 2. The Forth Generation of 

Dendrimer Molecule D2[4] 
 
THEOREM 3. Cw(D1[n] , 4) = 48 × 3n + 24 and Cw(D2[n] , 4) = 24 × 3n+1 − 66.  
PROOF. Every closed walk of length 4 in the dendrimer molecules D1[n] 
and D2[n] are constructed from one edge or a path of length 2. Therefore, 
we must count the following type of sequences: 

a) v1v2v1v2v1; 
b) v1v2v3v2v1; 
c) v2v1v2v3v2. 

There are  sequences of type (a) in D1[n],  
sequences of type (a) in D2[n],  sequences of type (b) in D1[n] and 

 sequences of type (b) in D2[n]. So, there are  sequences 
of type (c) in D1[n] and  sequences of type (c) in D2[n]. These facts 
imply that Cw(D1[n],4) = 48 × 3n + 1 + 24 and Cw(D2[n] , 4) = 24 × 3n + 1 − 66.   

 
THEOREM 4. Cw(D1[n] , 6) = 534 × 3n − 210 and Cw(D2[n] , 6) = 144 × 3n − 376.  
Proof. We apply a similar argument as in Theorem 1 to count the number of 
closed walk of length 6 in D1[n] and D2[n]. Such walks constructed from an edge, 
a path of length 2, a path of length 3 or a star S4. The number of closed 
walks of length 6 in D1[n] and D2[n] on an edge is and , 
respectively. The number of closed walks of length 6 in D1[n] and D2[n] on a path 
with length 2 is and , respectively and the number of 
closed walks of length 6 in D1[n] and D2[n] on a path with length 3 is 

and , respectively. Finally, the number of closed walks 
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of length 6 in D1[n] and D2[n] on a star S4 is and , 
respectively. Therefore, by a simple calculation, one can see that Cw(D1[n], 6) = 
534 × 3n − 210 and Cw(D2[n] , 6)= 144 × 3n − 376.      
 
THEOREM 5. Suppose k, k ≥ 8, is an even integer. Then  
 

534 × 3n − 210 < Cw(D1[n] , k) < 2(4k .3n+1 − 4k),                         (1) 
144 × 3n  − 376 < Cw(D2[n] , k) < .                    (2) 

PROOF. For proving the left sides of inequalities (1) and (2), we note that Cw(G , 2k) > 
Cw(G , 2(k−1)), k > 3. Thus Cw(G, 2k) > Cw  and so Cw(D1[n] , 2k) > Cw(D1[n] , 6) = 

 and Cw(D1[n] , 2k) > Cw(D1[n] , 6) =  By an elementary 
fact in algebraic graph theory, the number of closed walks of length k connecting 
the i-th and j-th vertices of G is equal to the ij-th entry of Ak, where A denotes the 
adjacency matrix of G. Therefore, for an arbitrary eigenvalue  we have | | ≤ 4. Thus, 

 . A similar 
argument proves the same for D2[n]. This completes the proof.  

Using calculations given above, it is possible to evaluate the Estrada 
index of this class of dendrimers. To explain this topological index, we assume 
that G is a simple graph on n vertices. The adjacency matrix of G is the n × n 
matrix where the entry aij is 1 if vertex i is adjacent to vertex j, otherwise aij is 0. 
The eigenvalues of the adjacency matrix of G are said to be the eigenvalues 
of G and to form the spectrum of G [13]. A graph of order n has exactly n 
eigenvalues not necessarily distinct, but necessarily real-valued. We denote 
these eigenvalues by λ1, λ2, …, λn. A graph-spectrum-based invariant, recently 
proposed by Estrada is defined as EE = EE(G) =  [14-16]. We 
encourage the interested readers to consult papers [17,18] and references 
therein for more information on Estrada index and its computational techniques. 

 
THEOREM 6. Consider the molecular graphs of dendrimers D1[n] and D2[n]. 
Then there are constants ci, 1 ≤ i ≤ 2 × 3n+2 – 1, and dj, 1 ≤ j ≤ 3n+1 – 1, such that 
−4 ≤ ci , dj ≤ 4 and the Estrada index of these graphs are computed as follows: 

1) EE(D1[n]) =  –  +  , 

2) EE(D2[n]) =  –  +  . 

CORROLAY 7. The Estrada index of dendrimers D1[n] and D2[n] are bounded 
above as follows: 

1) EE(D1[n]) ≤  –  + , 

2) EE(D2[n]) ≤  –  + . 
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CONCLUSIONS 
In this paper, a simple method enabling to compute the closed walks 

of dendrimers was presented. By our calculation it is possible to evaluate 
the Estrada index of these dendrimers. It is possible to extend our method 
in other classes of dendrimers. 
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OF FULLERENES 

 
 

MODJTABA GHORBANI∗ 
 
 
ABSTRACT. Let m(G,c) be the number of strips of length c. The omega 
polynomial was defined by M. V. Diudea as c

c
(G, x) m xΩ = ⋅∑ . One can 

obtain the Sadhana polynomial by replacing xc with x|E|-c in omega 
polynomial. Then the Sadhana index will be the first derivative of Sd(G,x) 
evaluated at x = 1. In this paper, the Omega and Sadhana polynomials of a 
new infinite class of fullerenes is computed for the first time. 
 
Keywords: Fullerene, Omega and Sadhana Polynomials, Sadhana Index. 
 
 
 

INTRODUCTION 
The discovery of C60 bucky-ball, which is a nanometer-scale hollow 

spherical structure, in 1985 by Kroto and Smalley, revealed a new allotrope 
of carbon element other than graphite, diamond and amorphous carbon [1,2]. 
Fullerenes are molecules in the form of cage-like polyhedra, consisting solely 
of carbon atoms and having pentagonal and hexagonal faces. In this paper, 
the [4,6] fullerenes 28n

C  with tetragonal and hexagonal faces are considered. 

Let p, h, n and m be the number of tetragons, hexagons, carbon atoms and 
bonds between them, in a given fullerene F. Since each atom lies in exactly 
3 faces and each edge lies in 2 faces, the number of atoms is n = (4p+6h)/3, 
the number of edges is m = (4p+6h)/2 = 3/2n and the number of faces is  
f = p + h. By the Euler’s formula n − m + f = 2, one can deduce that 
(4p+6h)/3 – (4p+6h)/2 + p + h = 2, and therefore p = 6. This implies that 
such molecules, made entirely of n carbon atoms, have 6 tetragonal and 
(n/2 − 4) hexagonal faces. 

Let G = (V, E) be a connected bipartite graph with the vertex set V = V(G) 
and the edge set E = E(G), without loops and multiple edges. The distance 
d(x,y) between x and y is defined as the length of a minimum path between 
x and y. Two edges e = ab and f = xy of G are called codistant, “e co f”, if 
and only if d(a,x) = d(b,y) = k and d(a,y) = d(b,x) = k+1 or vice versa, for a 
non-negative integer k. It is easy to see that the relation “co” is reflexive and 
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symmetric but it is not necessary to be transitive. Set C(e)= { f E(G) | f co e }∈ . 
If the relation “co” is transitive on C(e) then C(e) is called an orthogonal cut 
“oc” of the graph G. The graph G is called a co-graph if and only if the edge 
set E(G) is a union of disjoint orthogonal cuts. If any two consecutive edges 
of an edge-cut sequence are topologically parallel within the same face of 
the covering, such a sequence is called a quasi-orthogonal cut qoc strip. Three 
counting polynomials have been defined on the ground of qoc strips [3-7]: 

Ω = ⋅∑ c
c(G,x) m x                (1) 

Θ = ⋅ ⋅∑ c
c(G,x) m c x           (2) 

−Π = ⋅ ⋅∑ e c
c(G,x) m c x               (3) 

(G,x)Ω  and (G,x)Θ polynomials count equidistant edges in G while 
(G, x)Π , non-equidistant edges. In a counting polynomial, the first derivative 

(in x=1) defines the type of property which is counted; for the three polynomials 
they are: 

1′Ω = ⋅ = =∑c(G, ) m c e E(G)                   (4) 
21′Θ = ⋅∑c(G, ) m c            (5) 

c(G,1) m c (e c)′Π = ⋅ ⋅ −∑                  (6) 
The Sadhana index Sd(G) for counting qoc strips in G was defined 

by Khadikar et al.[8,9] as cSd(G) m(G,c)(|E(G)| c)= −∑ . We now define the 
Sadhana polynomial of a graph G as |E| c

cSd(G,x) mx .−= ∑  By definition of 
Omega polynomial, one can obtain the Sadhana polynomial by replacing xc 
with x|E|-c in Omega polynomial. Then the Sadhana index will be the first 
derivative of Sd(G, x) evaluated at x = 1. 

A topological index of a graph G is a numeric quantity related to G. 
The oldest topological index is the Wiener index, introduced by Harold Wiener. 
Padmakar Khadikar [10,11] defined the Padmakar–Ivan (PI) index as 

e uv E(G) u vPI(G) [m (e|G)  m (e|G)]= ∈= +∑ , where mu(e|G) is the number of edges 
of G lying closer to u than to v and mv(e|G) is the number of edges of G 
lying closer to v than to u. Edges equidistant from both ends of the edge uv 
are not counted.  

Ashrafi [12,13] introduced a vertex version of PI index, named the 
vertex PI index and abbreviated by PIv. This new index is defined as 

e uv E(G)v u vPI (G) [n (e|G)  n (e|G)]= ∈= +∑ , where nu(e|G) is the number of vertices 
of G lying closer to u and nv(e|G) is the number of vertices of G lying closer 
to v. If G is bipartite then nu(e|G) + nv(e|G) = n and so, PIv(G) = n |E(G)|. 
Throughout this paper, our notation is standard and taken from the standard 
book of graph theory [14]. We encourage the reader to consult papers by 
Ashrafi et al and Ghorbani et al [15-23].  
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RESULTS AND DISCUSSION 
The aim of this paper is to compute the counting polynomials of 

equidistant (Omega, Sadhana and Theta polynomials) of 28n
C  fullerenes with 

8n2 carbon atoms and 12n2 bonds (the graph G, Figure 1, is n=2).  
 

 
Figure 1. The Fullerene Graph C30. 

 
Figure 2. The Carbon Nanocone CNC4[1] 

with 16 vertices. 
 
Example 1. Suppose C30 denotes the fullerene graph on 30 vertices, 

see Figure 1. Then PIv(C30) = 1090 and Ω(C30,x) = x5 + 10x2 + 20x.  
 

Example 2. Consider the carbon nanocones G = CNC4[1] with 16 
vertices, Figure 2. Then PIv(G) = 320 and Ω(G,x) = 2x4 + 4x3.  

 

Example 3. Suppose H is the graph of carbon nanocones CNC4[2] 
with 36 vertices, see Figure 3. Then PIv(H) = 1728 and Ω(H,x) = 2x6 + 4x5 + 4x4. 

 
Figure 3. The Carbon Nanocone 

CNC4[2] with 36 vertices. 
Figure 4. C32 obtained from two copies 

of CNC4[1]. 
 
Example 4. Consider the fullerene 32C , Figure 2. One can see that 

v 32PI (C )=1536  and 8 6
32(C ,x) = 3x  + 4x . Ω  

Lemma. Consider the fullerene graph 28n
C . Then PIv( 28n

C )= 96n4.  
Proof. Because the graph is bipartite, by above discussion we have: 
PIv(G)= |E(G)||V(G) = 96n4. 
Consider the fullerene graph 28n

C  (Figure 4). Its symmetry group is 
isomorphic to a non-Abelian group of order 96. The orders of elements of 
its symmetry group are 1, 2, 3, 4 and 6. The center of its symmetry group is 
isomorphic with the group C2. In the Appendix one can see how its symmetry 
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group can be computed by GAP31 software. We can draw the graph of 28n
C  

by joining corresponding vertices of two copies of CNC4[n-1]. For example 
C32 is obtained from two copies of CNC4[1] as follows: 

 

Theorem. 4 33 4 1n n
28n

(C ,x) x (n )x .Ω = + −  
Proof. By Figure 5, there are two distinct cases of qoc strips. We 

denote the corresponding edges by e1, e2, …, e10. By using Table 1 and 
Figure 5 the proof is completed. 

 
Table 1. The number of co-distant edges of ei, 1 ≤ i ≤ 5. 

 

No. Number of co-distant edges Type of Edges 
3 4n e1 
4(n-1) 3n e2 

 

Corollary. 
2 212 4 12 33 4 1n n n n

28n
Sd(C ,x) x (n )x .− −= + −  

e1

e2

 
Figure 5.The graph of fullerene 28n

C  for n=2. 

 
CONCLUSIONS 

Fullerenes are molecules in the form of cage-like polyhedra, consisting 
solely of carbon atoms. In this paper, by constructing an infinite family of [4,6] 
fullerenes, we computed Omega and Sadhana polynomials of them for the 
first time. 

 
Appendix(Symmetry Group of C32 Fullerene by GAP Software [31] 
a:=(1,2)*(3,4)*(5,6)*(7,8)*(9,10)*(11,12)*(13,14)*(15,16)*(17,18)*(19,20)*(2

1,22)*(23,24)*(25,26)*(27,28)*(29,30)*(31,32); 
b:=(1,3)*(2,4)*(5,7)*(6,8)*(9,11)*(10,12)*(13,15)*(14,16)*(17,19)*(18,20)*(2

1,23)*(22,24)*(25,27)*(26,28)*(29,31)*(30,32); 
c:=(1,4)*(6,7)*(11,24)*(12,22)*(16,30)*(15,32)*(26,27)*(10,21)*(9,23)*(14,2

9)*(31,13)*(18,19); 
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d:=(1,2,3,4)*(7,8,6,5)*(21,12,24,9)*(11,22,10,23)*(15,30,14,31)*(16,32,13,2
9)*(27,28,26,25)*(19,20,18,17);G:=Group(a,b,c,d);e:=Elements(G);Print("\n");Print("
e= ",Size(e),"\n"); 

dd:=[ 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 64, 65, 
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 
89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 
126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 
160, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 
201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 
218, 219, 226, 227, 228, 229, 230 ];w:=[];ww:=[];tt:=[]; 

 
for i in  dd do 
ff:=Elements(SmallGroup(96,i)); 
for j in ff do 
AddSet(w,Order(j)); 
if w=[1,2,3,4,6] then AddSet(ww,i);fi; 
od;w:=[]; 
od; 
for i in ww do  
if Size(NormalSubgroups(SmallGroup(96,i)))=12 then 
Add(tt,i); 
fi; 
od; 
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ABSTRACT. The Geometric-Arithmetic (GA) index is a recently proposed 
topological index in mathematical chemistry. In this paper, a group theoretical 
method for computing the GA index of graphs is presented. We apply this 
method to some classes of dendrimers to calculate their GA index. 
 
Keywords: geometric-arithmetic index, dendrimer 
 
 
 

INTRODUCTION 
A molecular graph is a simple graph such that its vertices correspond 

to the atoms and the edges to the bonds. Note that hydrogen atoms are 
often omitted. By IUPAC terminology, a topological index is a numerical value 
associated with a chemical constitution purporting for correlation of chemical 
structure with various physical properties, chemical reactivity or biological 
activity [1−3]. The name “topological index” was first used by Hosoya [4], in 
connection with his Z index, which he used for characterizing the topological 
nature of  graphs. 

A dendrimer is generally described as a macromolecule, which is 
built up from a starting atom, such as nitrogen, to which carbon and other 
elements are added by a repeating series of chemical reactions that produce 
a spherical branching structure. In a divergent synthesis of a dendrimer, 
one starts from the core (a multi connected atom or group of atoms) and 
growths out to the periphery. In each repeated step, a number of monomers 
are added to the actual structure, in a radial manner, resulting in quasi 
concentric shells, called generations. In a convergent synthesis, the periphery 
is first built up and next the branches (called dendrons) are connected to the 
core. The stepwise growth of a dendrimer follows a mathematical progression 
and its size is in the nanometer scale [5−7].  

We now recall some algebraic notations that will be used throughout. 
Suppose G is a graph with vertex and edge sets V(G) and E(G), respectively. If e 
is an edge of G, connecting the vertices u and v then we write e = uv. For each 
vertex a and b, d(a,b) denotes the length of a minimal path connecting them. 
The eccentricity of a vertex x, ε(x), is defined as the maximum of {d(y,x) | y ∈ V(G)}.  
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Kashan, Kashan 87317-51167, I. R. Iran 
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Following Vukičević and Furtula [8], the GA index of a molecular graph G 

is defined as ∑ ∈ +
= )(

2
GEuv deg(v)deg(u)

v)deg(u)deg(
 GA(G) , where deg(u) denotes the 

degree of vertex u in G and the sum is taken over all edges e = uv of G. We 
encourage the interested readers to consult the papers [9−16] for other 
variants of this new topological index and their mathematical properties, as 
well as the reviews [17,18].  

In the present article, we continue our works on computing the 
topological indices of dendrimers [19−21]. Our notation is standard and 
mainly taken from the standard books of graph theory.  

 
RESULTS AND DISCUSSION 

The GA index of a molecular graph G is based on ratio of the 
geometric and arithmetic mean and can be computed by considering the 
automorphism group of G. One method to calculate this topological index 
efficiently is to use group theory and in particular the automorphism group 
of the graph [23−26]. An automorphism of a graph G is an isomorphism of 
G with itself and the set of all such mappings is denoted by Aut(G). 

 

 

Abstract 

 

Figure 1. The All-Aromatic Dendrimer DNS1[1] and DNS1[3], respectively. 
 

 

 

 

Figure 2. The Wang's Helicene-Based Dendrimers DNS2[2] and DNS2[3], respectively. 
 
In mathematics, groups are often used to describe symmetries of 

objects. This is formalized by the notion of a group action: every element of 
the group "acts" like a bijective map (or "symmetry") on some set. To clarify 
this notion, we assume that Γ is a group and X is a set. Γ is said to act on X 
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when there is a map φ : Γ  X ⎯→X such that all elements x ∈ X, (i) φ(e,x) = x 
where e is the identity element of Γ, and (ii) φ(g, φ(h,x)) = φ(gh,x) for all g,h ∈ Γ. 
In this case, Γ is called a transformation group; X is called a Γ -set, and φ is 
called the group action. For simplicity we define gx = φ(g,x).  

In a group action, a group permutes the elements of X. The identity 
does nothing, while a composition of actions corresponds to the action of the 
composition. For a given X, the set {gx | g ∈ Γ }, where the group action moves 
x, is called the group orbit of x. The subgroup which fixes is the isotropy 
group of x.  

Let H and K be two groups and K acts on a set X. The wreath 
product H~K of these groups is defined as the set of all order pair (f ; k), 
where k ∈ K and HXf →:  is a function such that (f1 ; k1).(f2 ; k2) = (g ; k1k2) 
and ( ) ( ) ( )2k

21 ifif = ig . 
In the following simple lemma a formula for computing the GA index 

of a graph based on the action of Aut(G) on E(G) is obtained. 
 

            
Figure 3. Some Elements of Ei,1 , Ei,2 , Ei,3 , Ei,4  and  . 

 
Lemma. Consider the natural action of Aut(G) on the set of edges 

containing orbits 1E , 2E , … , kE . Then 
)deg(v)deg(u
))deg(vdeg(u

E GA(G)
ii

iik

i
i +

= ∑
=

2
||

1
, 

where iivu is an edge of the i−th orbit. In particular, if the action is transitive 

and e=uv is an edge of G then 
deg(v)deg(u)

v)deg(u)deg(
GE GA(G)

+
=

2
|)(| . 

Proof. By definition, for each edge e1=uv and e2=xy in the same 
orbit O, there exists an automorphism f such that (f(u)=x & f(v)=y) or (f(u)=y & 

f(v)=x). Thus .
22

deg(y)deg(x)
y)deg(x)deg(

deg(v)deg(u)
v)deg(u)deg(

+
=

+
 Since E(G) is partitioned by 

orbits, .
2

||
2

11 )deg(v)deg(u
))deg(vdeg(u

E
deg(v)deg(u)

v)deg(u)deg(
 GA(G)

ii

iik

i
i

k

i
Euv i +

=
+

= ∑∑∑
==

∈  This 

completes the proof.   
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We are now ready to calculate the GA index of dendrimers depicted 
in Figures 1 to 3. We have: 

 
Theorem. The GA indices of dendrimers depicted in Figures 1 and 

2 are as follows: 
1. ,35/6)12(2429])[( 1 −−+×= nnnDNSGA  
2. )325/62419)(12()325/61622(2])[( 11

2 ++−−++= −− nnnDNSGA
                           ).13( −+  
Proof. To compute the GA indices of these dendrimers, we first 

compute the number of their vertices and edges as follows: 
 

|V(DNS1[n])| = 18 × 2n+1 – 12; |V(DNS2[n])| = 27×2n+1 – 1 
|E(DNS1[n])| = 21 × 2n+1 – 15; |E(DNS2[n])| = 33(2n+1 – 1) 

 

Next we compute the automorphism group of DNS1[n]. To do this, 
we assume that T[n] is a graph obtained from DNS1[n] by contracting each 
hexagon to a vertex. The adjacencies of these vertices are same as the 
adjacencies of hexagons in DNS1[n]. Choose the vertex x0 of T[n], associated 
to the central hexagon, as root. Label vertices of T[n] adjacent to x0 by 1, 2 and 
3; the vertices with distance 2 from x0 by 4, 5, 6, 7, 8, 9; the vertices with 
distance 3 from x0 by 10, 11, 12, …, 21; … and vertices with distance n 
from x0 by 3 × (2n−1) + 1, …, 3 × (2n+1−1). Set X = {1, 2,…, 3×(2n+1−1)}. Then 
S3 acts on X = {1, 2, …, 3×(2n−1)} and the automorphism group of DNS1[n] is 
isomorphic to Z2 ~ S3, obtained from above action, see Figure 3. Suppose 
Aut(DNS1[n]) acts on E(DNS1[n]) and E0,0, E1,1 , E1,2 , E1,3 , E1,4 , …, En,1 , 
En,2 , En,3 , En,4 are orbits of this action. We also assume that H is the central 
hexagon and E0,0 is the set of all edges of H. To obtain the edges Ei,1, Ei,2, 
Ei,3, Ei,4 we use the following algorithm: 

1. Ei,1 is the set of all edges e = uv such that d(u,H) = 3i – 3, d(v,H) = 
3i – 2 and deg(u) = deg(v) = 3, where for each subset Y ⊆ V(DNS1[n]), 
d(u,Y) = Min{d(u,b) | b ∈ Y}. 
2. Ei,2 is the set of all edges e = uv such that d(u,H) = 3i – 2 and 
d(v,H) = 3i – 1. 
3. Ei,3 is the set of all edges e = uv such that d(u,H) = 3i – 1 and 
d(v,H) = 3i. 
4. Ei,4 is the set of all edges e = uv such that d(u,H) = 3i, d(v,H) = 3i + 1, 
deg(u) = 3 and deg(v) = 2. 
Obviously, for DNS1[n] if e = uv ∈ Ei,j then  

⎩
⎨
⎧

=
=

=
+ 4,3,25/62

112
i

i
deg(v)deg(u)

v)deg(u)deg(
. Moreover, |Ei,1| = 3 × 2i-1 

and |Ei,2| = |Ei,3| = |Ei,4| = 6 × 2i-1. This completes the proof of (1). To 
prove 2, it is enough to consider the action of the group Aut(DNS2[n]) 
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on E(DNS2[n]) and use a similar method as given the case 1. Notice 
that in this case the automorphism group Aut(DNS2[n]) is isomorphic 
to the wreath product Z2 ~ Z2, where Z2 acts on the set Z = {1, 2, …, 
2n−1}. 
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ABSTRACT. Cluj polynomials are defined on the unsymmetric Cluj matrices 
or by a cutting procedure, as the counting polynomials which collect the 
vertex proximities in the graph. On these proximities, two Cluj polynomials 
CJS and CJP and the PIv polynomial can be defined. Formulas for these 
counting polynomials are derived in case of tori of several tessellation. 

 
Keywords: Cluj polynomial, counting polynomial, torus 

 
 
 
INTRODUCTION 

Let G=G(V,E) be a simple graph, with no loops and multiple edges 
and V(G), E(G) be its vertex and edge sets, respectively. 

A graph G is a partial cube if it is embeddable in the n-cube nQ , 
which is the regular graph whose vertices are all binary strings of length n, 
two strings being adjacent if they differ in exactly one position [1]. The distance 
function in the n-cube is the Hamming distance. A hypercube can also be 
expressed as the Cartesian product: 21KWQ n

in ==  
For any edge e=(u,v) of a connected graph G let nuv denote the set 

of vertices lying closer to u than to v: { }= ∈ <( ) | ( , ) ( , )uvn w V G d w u d w v . It 

follows that { }= ∈ = +( ) | ( , ) ( , ) 1uvn w V G d w v d w u . The sets (and subgraphs) 
induced by these vertices, nuv and nvu , are called semicubes of G; the 
semicubes are called opposite semicubes and are disjoint [2,3]. 

A graph G is bipartite if and only if, for any edge of G, the opposite 
semicubes define a partition of G: ( )uv vun n v V G+ = = . These semicubes 
are just the vertex proximities (see above) of (the endpoints of) edge e=(u,v), 
which CJ polynomial counts. In partial cubes, the semicubes can be estimated 
by an orthogonal edge-cutting procedure. The orthogonal cuts form a partition 
of the edges in G: 
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= ∪ ∪ ∪ ∩ = ∅ ≠K1 2( ) , ,k i jE G c c c c c i j . 
To perform an orthogonal edge-cut, take a straight line segment, 

orthogonal to the edge e, and intersect e and all its parallel edges (in a 
plane graph). The set of these intersections is called an orthogonal cut ck(e) 
with respect to the edge e. An example is given in Table 1. 

To any orthogonal cut ck, two numbers are associated: first one is 
the number of edges ek =|ck| intersected by the orthogonal segment while 
the second (in round brackets, in Figure 1) is vk or the number of points 
lying to the left hand with respect to ck. 

Because in bipartite graphs the opposite semicubes define a partition 
of vertices, it is easily to identify the two semicubes: nuv= vk and nvu= v-vk or 
vice-versa. 

The present study is focused on three counting polynomials of which 
coefficients can be calculated from the graph proximities/semicubes. 

 

 

 

CJS(x) = 3·2·3(x5+x121)+ 3·2·6(x16+x110)+ 
               3·2·8(x31+x95)+ 3·2·8(x47+x79)+ 
               3·1·8(x63+x63) 
CJS’(1) = 21924; CJe S’’(1) = 1762320 
PIv(x) = 3·2·3(x5+121)+ 3·2·6(x16+110)+ 
             3·2·8(x31+95)+ 3·2·8(x47+79)+ 
             3·1·8(x63+63) 
PIv’(1) = 21924; PIv’’(1) = 2740500 
CJP(x) = 3·2·3(x5·121)+ 3·2·6(x16·110)+ 
       3·2·8(x31·95)+ 
3·2·8(x47·79)+3·1·8(x63·63) 
CJP’(1) = 489090=CJP(G)= SZv’(1) 

Figure 1. Cutting procedure in the calculus of several topological descriptors. 
 

COUNTING POLINOMIALS OF PROXIMITY 
According to the mathematical operations used in composing the 

edge contributions, these polynomials can be defined as [4]: 
 

(i) Summation; the polynomial is called Cluj-Sum and is symbolized 
CJS -Diudea et al [5-9]. 

 ( )−= +∑( ) v v vk k
eCJS x x x      (1) 

 (ii) Pair-wise summation; the polynomial is called PIv (vertex-Padmakar-
Ivan [10]) - Ashrafi et al [11-14]. 

 + −= ∑ ( )( ) v v vk k
v ePI x x       (2) 
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 (iii) Pair-wise product; the polynomial is called Cluj-Product (and 
symbolized CJP) [4,8,15-19] or also Szeged (and symbolized SZ) [12-14]: 

 −= = ∑ ( )( ) ( ) v v vk k
eCJP x SZ x x      (3) 

Their coefficients can be calculated from the graph proximities / 
semicubes as shown in Figure 1: the product of three numbers (in the front 
of brackets – right hand of Figure 1) has the meaning: (i) symmetry of G;  
(ii) occurrence of ck (in the whole structure) and (iii) ek. 

The first derivative (in x=1) of a (graph) counting polynomial provides 
single numbers, often called topological indices. 

Observe that the first derivative (in x=1) of the first two polynomials 
gives one and the same value (Figure 1), however, their second derivative 
is different and the following relations hold in any graph [4,7]. 

 ′′ =(1) (1)vCJS PI ; ′′′′ ≠(1) (1)vCJS PI     (4) 
The number of terms, given by P(1), is: CJS(1)=2e while PIv(1)=e 

because, in the last case, the two endpoint contributions are pair-wise summed 
for any edge in a bipartite graph. 

In bipartite graphs, the first derivative (in x=1) of PIv(x) takes the 
maximal value: 

′ = ⋅ = ⋅(1) | ( ) | | ( ) |vPI e v E G V G     (5) 
 It can also be seen by considering the definition of the corresponding 
index, as written by Ilić [20]: 

= =

′= = + = ⋅ −∑ ∑, , ,( ) (1)v v u v v u u v
e uv e uv

PI G PI n n V E m
  (6) 

where nu,v, nv,u count the non-equidistant vertices with respect to the 
endpoints of the edge e=(u,v) while m(u,v) is the number of equidistant 
vertices vs. u and v. However, it is known that, in bipartite graphs, there are 
no equidistant vertices, so that the last term in (6) will disappear. The value 
of PIv(G) is thus maximal in bipartite graphs, among all graphs on the same 
number of vertices; the result of (5) can be used as a criterion for the “bipatity” 
of a graph [6]. 

The third polynomial is calculated as the pair-wise product; notice 
that Cluj-Product CJP(x) is precisely the (vertex) Szeged polynomial SZv(x), 
defined by Ashrafi et al. [12-14] This comes out from the relations between 
the basic Cluj (Diudea [16,21,22]) and Szeged (Gutman [22,23]) indices: 

′′ = = =(1) ( ) ( ) (1)vCJP CJDI G SZ G SZ     (7) 
All the three polynomials (and their derived indices) do not count  

the equidistant vertices, an idea introduced in Chemical Graph Theory by 
Gutman [23]. 
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CLUJ POLYNOMIAL IN (4,4), (6,3) AND ((4,8)3) COVERED TORI 
 In bipartite regular toroidal objects of (4,4), (6,3) and ((4,8)3) tessellation 
[26,27] (Figure 2) the Cluj and related polynomials (i.e., polynomials counting 
non-equidistant vertices) and their indices show very simple forms, as given in 
Table 1. The formulas were obtained by cutting procedures similar to that 
presented in the introductory section. Note that the studied tori are non-twisted 
and (with some exceptions) all-even parity of the net parameters [c,n]. 
 

  

 
Figure 2. Tori of (4,4); (6,3) (top row) and 
((4,8)3)S, ((4,8)3)R (bottom row) covering. 

 
Table 1. Cluj counting polynomials and indices in regular toroidal structures. 

/2 /2( ) ( )v vCJS x e x x= +  
2(1) ( / 2 / 2) 2( )CJS e v v e v cn′ = + = ⋅ =  

/2 /2( ) ( )v v v
vPI x e x e x+= = ⋅  

(1) (1)v ePI e v CJ S′ ′= ⋅ =  

/2 /2( ) ( ) ( )v vCJP x SZ x e x ⋅= =  
2

3 3

(1) ( / 2 / 2) ( / 2)
(1 / 2) (1 / 2)( )

CJP e v v e v
v cn

′ = ⋅ =
= =

 

v cn= ; ( / 2)e d v=  
 

[c,n] v e PIv(x) CJS(x) CJS’(1) SZ’(1) 
(4,4); d=4       

10,10 100 200 200x100 400x50 20000 500000 
12,14 168 336 336x168 672x84 56448 2370816 
10,20 200 400 400x200 800x100 80000 4000000 
10,50 500 1000 1000x500 2000x250 500000 62500000 

(6,3); d=3       
H 8,8 64 96 96x64 192x32 6144 98304 

H 8,10 80 120 120x80 240x40 9600 192000 
V 8,26 208 312 312x208 624x104 64896 3374592 
V 8,32 256 384 384x256 768x128 98304 6291456 
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[c,n] v e PIv(x) CJS(x) CJS’(1) SZ’(1) 
((4,8)3)S; d=3       
20,20 (m=1) 400 600 600x400 1200x200 240000 24000000 
28,42 (m=1) 1176 1764 1764x1176 3528x588 2074464 609892416 
5, 10 (m=8)a 400 600 600x400 1200x200 240000 24000000 
7, 21 (m=8)a 1176 1764 1764x1176 3528x588 2074464 609892416 

((4,8)3)R; d=3       
10,10 (m=4) 400 600 600x400 1200x200 240000 24000000 
10,20 (m=4) 800 1200 1200x800 2400x400 960000 192000000 

14,21 (m=4)b 

 
1176 

 
1764 

 

294x1176 + 
1176x1162 + 

294x1148 

1764x588 + 1764x574

 
2049768 

 
595428792 

 
a net design by Le22tt; (m=8) 
b net designed by Le; (m=4); in case c,n=odd, the graph is non-bipartite 
 

CLUJ POLYNOMIAL IN NAPHTHYLENIC TORI 
The naphthylenic pattern [28,29] is an analogue of phenylenic (6,4) 

pattern [30-32] it shows the ring sequence (6,6,4). Naphthylenic structures 
can be designed either by a cutting procedure (see above) or by using the map 
operation sequence: Le(Le(G)), applied on the square tessellation (4,4) 
embedded in the torus [28,29] We stress that Leapfrog Le operation performed 
on (4,4) results in the ((4,8)3)R tessellation, with the quadrilaterals disposed 
as rhombs R. A second iteration of Le operation will provide the naphthylenic 
pattern [28] eventually named H/VNPX, with the local signature: (4,6,8): 
(0,4,0);(1,3,2);(0,8,0), Figure 3, left. 

 

 
 

Figure 3. Isomeric Le(((4,8)3)R[6,18]) and Le(((4,8)3)S[12,36]) objects; 
v=1296; e=1944 

 
 Formulas to calculate Cluj and related polynomials, and derived 
indices as well, in toroidal structures designed by Le(T((4,8)3)R), are given 
in Table 2. Examples are given at the bottom of the table. 
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Table 2. Cluj counting polynomials and indices in Le(Le(4,4))=Le(T((4,8)3)R) 
toroidal structures; c=even; Signature: (4,6,8): (0,4,0);(1,3,2);(0,8,0); m=12. 

(c=odd; non-Bipartite) 

 

/2 [ 18( 4)/2] /2 [ 18( 4)/2]

/2 [13 10( 4)/2] /2 [13 10( 4)/2]

/2 /2

( ) ( / 3)( )
(2 / 3)( )
( / 2)( );

1; 27; 1; 31; /

v a c v a c

v c v c

v v

CJS x v x x
v x x

v x x
k a k a k n c

+ + − − + −

+ + − − + −

= + +
+ +

+
= = > = =

 

 2 2 4(1) (3 / 2) 216 ; 1,2,...CJS e v v k c k′ = ⋅ = ⋅ = =  
 /2 /2( ) ( )v v v

vPI x e x e x+= = ⋅  
 (1) (1)v ePI e v CJ S′ ′= ⋅ =  

 
2

{ /2 [ 18( 4)/2]}{ /2 [ 18( 4)/2]}

{ /2 [13 10( 4)/2]}{ /2 [13 10( 4)/2]}

( /2)

( ) ( / 3)( )
(2 / 3)( )

( / 2)( );
1; 27; 1; 31; /

v a c v a c

v c v c

v

CJP x v x
v x

v x
k a k a k n c

+ + − − + −

+ + − − + −

= +
+

= = > = =

 

 2 2 4 2(1, 1) (1) 4 (162 131 230 123)CJP k SZ kc k c c c′ ′> = = − + −  
 2 4 2(1, 1) (1) 4 (162 131 302 179)CJP k SZ c c c c′ ′= = = − + −  
 212 ; / 1, 2,...v kc k n c= = =  
 (3 / 2)e v=  

(c,n) 
v; e 

CJS(x) 
 

CJS’(1) 
 

SZ’(1) 
 

(4,8) 
384; 576 

128x223 + 256x205 + 384x192 + 
256x179 + 128x161 

221184 
 

21067392 
 

(6,18) 
1296; 1944 

432x697 + 864x671 + 1296x648 +  
864x625 + 432x599 

2519424 
 

814799088 
 

(8,8) 
768; 1152 

256x447 + 512x417 + 768x384 + 
 512x351 + 256x321 

884736 
 

168295680 
 

(10,40) 
4800; 7200 

1600x2485 + 3200x2443 + 4800x2400 + 
 3200x2357 + 1600x2315 

34560000 
 

41454523200 
 

 
 
When Le operation is applied to the ((4,8)3)S tessellation (with the 

quadrilaterals disposed as squares S) the resulted naphthylenic pattern will 
show the quadrilaterals disposed as rhombs (Figure 3, right). 

As can be seen, the two series show the same tessellation signature 
(see above) and differ only in the embedding, thus resulting different classes 
of equivalence and corresponding polynomial terms. The first derivative CJS`(1) 
values are the same in isomeric structures (Tables 2 and 3, the first three rows, 
next last columns), as a consequence of the bipartity; also it can be considered 
as a case of (summation operation) degeneracy. In the opposite, the first 
derivative SZ`(1) shows different values (Tables 2 and 3, last columns), the 
multiplication operation involved being a stronger discriminating operation. 
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In series Le(TH((4,8)3)S), c=even, the case c=4m shows the smallest 
number of polynomial terms. In series Le(TH((4,8)3)R), c=even, there is no such 
a limitation; however, in case c=odd of this series, the graphs are non-bipartite 
and the polynomials show increased number of terms. 

 
Table 3. Cluj counting polynomials and indices in Le(TH((4,8)3)S) toroidal structures, 

c=even. Signature: (4,6,8): (0,4,0);(1,3,2);(0,8,0); m=3; (c=odd; Bipartite) 
 

 

/2 [24 15( 1) 12( 1)( 1)] /2 [24 15( 1) 12( 1)( 1)]

/2 [16 11( 1) 12( 1)( 1)] /2 [16 11( 1) 12( 1)( 1)]

/2 [12 9( 1)] /2 [12 9( 1)]

/2 [4

( ) ( / 6)( )
( / 3)( )
( / 6)( )
( / 3)(

v m k m v m k m

v m k m v m k m

v m v m

v

CJS x v x x
v x x
v x x
v x

+ + − + − + − + − + − +

+ + − + − + − + − + − +

+ + − − + −

+ +

= + +
+ +

+ +
5( 1)] /2 [4 5( 1)]

/2 /2

)
( / 2)( );

/ ; ( 4) / 4

m v m

v v

x
v x x

k n c m c

− − + −+
+

= = −

 

 2 2 4(1) (3 / 2) (27 / 2) ; 1,2,...CJS e v v k c k′ = ⋅ = ⋅ = =  
 /2 /2( ) ( )v v v

vPI x e x e x+= = ⋅  

 (1) (1)v ePI e v CJ S′ ′= ⋅ =  

 

{ /2 [24 15( 1) 12( 1)( 1)]} { /2 [24 15( 1) 12( 1)( 1)]}

{ /2 [16 11( 1) 12( 1)( 1)]} { /2 [16 11( 1) 12( 1)( 1)]}

{ /2 [12 9( 1)]} { /2 [12 9( 1)]}

( ) ( / 6)( )
( / 3)( )
( / 6)( )
( / 3)

v m k m v m k m

v m k m v m k m

v m v m

CJP x v x
v x
v x
v

+ + − + − + ⋅ − + − + − +

+ + − + − + ⋅ − + − + − +

+ + − ⋅ − + −

= +
+

+
{ /2 [4 5( 1)]} { /2 [4 5( 1)]}

( /2) ( /2)

( )
( / 2)( );

/ ; ( 4) / 4

v m v m

v v

x
v x

k n c m c

+ + − ⋅ − + −

⋅

= = −

 

 
2 2 4 2 2 2 2(1) (1) ( /16)(162 216 12 71

864 480 1728)
CJP SZ kc k c k c kc c

kc c
′ ′= = − − − +

+ −
 

 23 ; / 1,2,...v kc k n c= = =  
 (3 / 2)e v=  

(c,n) 
v; e 

CJS(x) 
 

CJS’(1) 
 

SZ’(1) 
 

(8,16) 
384; 576 

64x240 + 128x232 + 64x204 + 128x196 + 384x192 + 
128x188 + 64x180 + 128x152 + 64x144 

221184 
 

20870144 
 

(12,36) 
1296; 1944 

216x759 + 432x747 + 216x669 + 432x657 + 1296x648 + 
432x639 + 216x627 + 432x549 + 216x537 

2519424 
 

809267760 
 

(16,16) 
768; 1152 

128x438 + 256x422 + 128x414 + 256x398 + 768x384 + 
256x370 + 128x354 + 256x346 + 128x330 

884736 
 

168961024 
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CLUJ POLYNOMIAL IN TiO2 TORI 
After the discovery of carbon nanotubes many researchers addressed 

the question about the possible existence of nano-tubular forms of other 
elements and they tried to obtain inorganic nanostructures [33-35]. Among 
numerous oxide nanostructures, the titanium nanotubular materials are of high 

interest due to their chemical inertness, endurance, strong oxidizing power, 
large surface area, high photocatalytic activity, non-toxicity and low production 
cost. The application of TiO2 nanotubes to photocatalysis, in solar cells, as 
nanoscale materials for lithium-ion batteries and as gas-sensing material 
was discussed in the literature [36-42]. The nanotubes were synthesized using 
various precursors [41-47], carbon nanotubes, porous alumina or polymer 
membranes as templates [40-56] fabrication by anodic oxidation of Ti [57-59], 
sol–gel technique [60-64] and sono-chemical synthesis [65]. Models of possible 
growth mechanisms of titanium nanotubes are discussed [48,49,64] but the 
details of the atomic structure of the nanotube walls and their stacking mode are 
unknown. TiO2 nanotubes are semiconductors with a wide band gap and their 
stability increases with increasing of their diameters. The numerous studies 
for the use of nanotubular titania in technological applications require a lot of 
theoretical studies of stability and other properties of such structures. Theoretical 
studies on the stability and electronic characteristics of TiO2 nanostructures 
were presented in ref. [66-68]. 

The titanium nanostructures on study below can be achieved by map 
operations: the sequence consists of Du[Med(G)], applied on polyhex tori or 
tubes (Figure 4). 

Formulas for calculating Cluj and related polynomials, in toroidal 
TiO2 structures, are given in Table 4. 

 
 

Figure 4. TiO2 covering embedded in the torus, designed by Du(Med(H(6,3)[c,n])) 

Table 4. Cluj and Related Polynomials in TiO2 Tori 

( ) ( )ka kbe eCJS x e x x= +  
2(1) ( ) (1 / 2)ka kbCJS e e e e v e′ = + = ⋅ =  

( ) ( )ka kbe e v
vPI x e x e x+= = ⋅  

(1) ( ) (1)v ka kb ePI e e e e v CJ S′ ′= + = ⋅ =  
( ) ( ) ( )ka kbe eCJP x SZ x e x ⋅= =  

2(1) ( ) ( / 4) (3 2)(3 2)ka kbCJP e e e e c n n′ = ⋅ = − +  

(3 / 2)v cn=  
3e cn=  
( )( )1 1 / 2kae e k k c= + −  

kb kae e c= +  

( ) ( )2
1 / 2 / 2 1e c c c= − ⋅ +  

/k n c=  
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Tori  CJS(x) CJS`(1) CJP(x) CJP`(1) 
H[10,10] 300x70+300x80 45000 300x5600 1680000 
H[10,20] 600x145+600x155 180000 600x22475 13485000 
H[10,30] 900x220 + 900x230 405000 900x50600 45540000 
H[12,14] 504x120 + 504x132 127008 504x15840 7983360 
V[8,10] 240x56 + 240x64 28800 240x3584 860160 
V[10,20] 600x145+600x155 180000 600x22475 13485000 
V[10,30] 900x220+900x230 405000 900x50600 45540000 
V[10,50] 1500x370+1500x380 1125000 1500x140600 210900000 
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ABSTRACT. A map taking graphs as arguments is called a graph invariant 
or topological index if it assigns equal values to isomorphic graphs. A dendrimer 
is an artificially manufactured or synthesized molecule built up from branched 
units called monomers. In this paper, the Wiener index of the micelle-like chiral 
dendrimers is computed. 

 
Keywords: Micelle-like chiral dendrimer, molecular graph, Wiener index. 

 
 
 
INTRODUCTION  

The basic assumption for all molecules based hypothesis is that 
similar molecules have similar activities. This principle is also called Structure-
Activity Relationship (SAR). Quantitative Structure Activity Relationship, 
QSAR, is the process by which a chemical structure is quantitatively correlated 
with a well defined process, such as biological activity or chemical reactivity. 

In mathematical chemistry, molecules are often modeled by graphs 
named “molecular graphs”. A molecular graph is a simple graph in which 
vertices are the atoms and edge are bonds between them. A topological 
index for a molecular graph G is a numerical value for correlation of chemical 
structure with various physical properties, chemical reactivity or biological 
activity [1]. The Wiener index [2] is the first topological index introduced by 
Harold Wiener. This index is defined as the sum of all topological distances 
between the pair vertices. In an exact phrase, if G is a graph and d(x,y) 
denotes the length of a minimal path connecting vertices x and y of G then 

∑ ⊆
=

)(},{
),()(

GVyx
yxdGW will be the Wiener index of G. 

Nano-biotechnology is a rapidly advancing area of scientific and 
technological opportunity that applies the tools and processes of nanofabrication 
to build devices for studying biosystems. Dendrimers are among the main objects 
of this new area of science. Here a dendrimer is a synthetic 3-dimensional 
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macromolecule, prepared in a step-wise fashion from simple branched monomer 
units, the nature and functionality of which can be easily controlled and varied. 
The aim of this article is a mathematical study of this class of nano-materials. 
Cyclopropane and its derivatives are among the most intensely structurally 
studied molecules. Triangulanes are hydrocarbons consisting of spirofused 
cyclopropane rings. They are one of the most exotic groups of cyclopropane 
derivatives. Many of them show fascinating chemical, physical and sometimes 
biological properties [3]. 

Diudea and his co-workers [4-12] was the first scientist which considered 
the topological properties of nanostructures. After leading works of Diudea, 
some researchers from China, Croatia, Germany, India, Iran, Italy and UK 
continued these programs to compute distance-based topological indices of 
nanostructures [13-24].  
 
 
MAIN RESULTS AND DISCUSSION 

Consider the molecular graph of micelle-like chiral dendrimer G[2] 
depicted in Figure 1(c). We extend this molecular graph to the case that 
there exists a maximal chain of length n from the core to the end hexagon 
and denote its molecular graph by G[n]. The aim of this section is to 
compute the Wiener index of this class of dendrimers. 

 

 
 

(a) (b) 

 

 

(c) (d) 
Figure 1. a) The Core of Micelle-Like Chiral Dendrimer G[n]; b) The Molecular 

Graph of G[0]; c) The Molecular Graph of G[2]; d) A Branch of G[2]. 
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Let G be a simple molecular graph without directed and multiple 
edges and without loops, the vertex and edge-sets of which are represented 
by V(G) and E(G), respectively. A path of length n in G is a sequence of n + 1 
vertices such that from each of its vertices there is an edge to the next 
vertex in the sequence. For two vertices x and y of G, d(x,y) denotes the 
length of a minimal path connecting x and y. A graph G is called connected, 
if there is a path connecting vertices x and y of G, for every x, y ∈ V(G).  

Suppose X is a set, Xi, 1 ≤ i ≤ m, are subsets of X and F = {Xi}1≤i≤m is 
a family of subsets of X. If Xi’s are non-empty, m

i 1 iX X== U  and i jX X∩ =∅ , 

i ≠ j, then F is called a partition of X. If G is not connected then G can be 
partitioned into some connected subgraphs, which is called component of 
G. Here a subgraph H of a graph G is a graph such that V(H) ⊆ V(G) and 
E(H) ⊆ E(G). A subgraph H of G is called convex if x, y ∈ V(H) and P(x,y) is 
a shortest path connecting x and y in G then P is a subgraph of H.  

Let’s start by computing the number of vertices and edges of G[n]. 
From Figure 1(c), one can easily seen that this graph can be partitioned 
into four similar branches Figure 1(d) and a core depicted in Figure 1(a). 
Suppose an and bn denote the number of edges and vertices in each branch of 
G[n], respectively. Then an = 9 × 2n+1 – 8 and bn = 2n+4 − 6. By Figure 1, one 
can see that |V(G[n])| = 4bn + 34 = 2n+6 + 10 and |E(G[n])| = 9 × 2n+3 + 9.  

A graph G is called to satisfy the condition (*) if G is connected and 
there exists a partition {Fi}1≤i≤k for E(G) such that for each i, G – Fi has 
exactly two components, say Gi,1 and Gi,2,  where they are convex subgraphs 
of G. The following theorem25 is crucial in our calculations. 

 

Theorem 1. If G satisfy the condition (*) then .|)(||)(| W(G) 2,1 1, i
k
i i GVGV∑ ×= =     

 We are now ready to prove our main result. To do this, we first define 
the notion of parallelism in a graph. The edge e1 = xy  said to be parallel with 
edge e2 = ab, write e1 || e2, if and only if D(x,ab) = D(y,ab), where D(x,ab) = 
min{d(x,a),d(x,b)} and D(y,ab) is defined similarly. In general this relation is 
not an equivalence relation; even it is not symmetric or transitive. But it is 
an equivalence relation in the edges of graph G[n] (by a few mathematical 
background one can see that this equivalence relation defines a partition on 
E(G[n]) each part being an equivalence class). The equivalence class of G[n] 
containing the edge e is denoted by [e]. So G[n] satisfies condition (*). 
 
Theorem 2. The Wiener index of G[n] is computed as follows: 

.11894
8
53261

2
33 = W(G[n]) 68 +⎟

⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ + ++ nn nn  
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Proof. Consider the parallelism relation “||” on the edges of G[n]. Since “||” 
is an equivalence relation on E(G), E(G) can be partitioned into equivalence 
classes. From Figure 1(c), there are two equivalence classes of size 3 and 
other classes have sizes 1 or 2. It is also clear that for each edge e ∈ E(G[n]), 
G[n] – [e] has exactly two components where each of them is convex, thus 
we can use the Theorem 1. The hexagons nearest to the endpoints of G[n] 
are called the end hexagons of G[n].  

Consider the subgraph A of G[n] depicted in Figure 2(a) is not an 
end hexagon. It is easy to see that F1 = {e7}, F2 = {e1,e4}, F3 = {e3,e6} and F4 = 
{e2,e5} are the equivalence classes of A. The components of G[n] – F1 have 

rb  and r
c
r bnGVb −= |])[(|  vertices; the components of G[n] – F4 have 

3−rb and c
rb )3( −  vertices and the components of G[n] – F2, G[n] – F3 

have exactly 31 −−rb and c
rb )3( 1 −−  vertices, where 1 ≤ r ≤ n. One can see 

that for an arbitrary r, the number of hexagons in the (n – r)-th generation of 
G[n] is 4 × 2n-r. 

Next we consider an end hexagon, the subgraph B depicted in Figure 2(b). 
Then H1 = {e11}, H2 = {e7 }, H3 = {e9 }, H4 = {e8 }, H5 = {e10}, H6 = {e2,e6}, H7 = {e1,e5} 
and H8 = {e3,e4} are the equivalence classes of B. On the other hand, one 
of the component G[n] – H1, G[n] – H2, …, G[n] – H8 have exactly 10, 2, 1, 2, 1, 
5, 5 and 7 vertices, respectively. Also, one can see the number of end hexagons 
is 4 × 2n.  

 The Subgraph A 

 

(b) The Subgraph B 

 
(c) The Core of G[n] 

 
Figure 2. Fragments of the dendrimer G[n] 

 
Finally, we consider the core of G[n], Figure 2(c). The equivalence 

classes of the core are X1 = {1,2,3}, X2 = {4,5}, X3 = {6,7}, X4 = {8,9}, X5 = {10,11}, 
X6 = {13}, X7 = {14}, X8 = {15}, X9 = {16}, X10 = {17}, X11 = {18}, X12 = {19} and 
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X13 = {12}. Again G[n] – Xi, 1 ≤ i ≤ 13, are two component graphs, say Hi,1 
and Hi,2. Define a* = a × ac , a is integer, and .131|,(||)(| 21,

* ≤≤×= iXVXVX )i,ii  
Then we have the following equalities: 

)*,52(*
1 += nbX  )*,3(*

3
*
2 +== nbXX  )*,72(*

4 += nbX )*,10(*
5 += nbX  

,
4

|])[(| 2
*
13

nGVX = .126)*,13(* ≤≤−= iiX i  

Now, applying Theorem 1, we have:  
( )

( )
[ ]****7

1
*

*
*****

1
1

*
1

**

)10()3(2)72()52(2

2
|])[(|107)521(224

)3(2)3(24])[(

++++++++∑+

⎟
⎠
⎞

⎜
⎝
⎛+++++××+

∑ ++−+×=

=

−
= −−−−

nnnni

n

n
i ininin

i

bbbbi

nGV

bbbnGW

. 

 
The proof is now complete by substituting the variables with those 

given above.           
 

CONCLUSIONS 
In this paper a simple method enabling to compute the Wiener index 

of dendrimers was presented. We apply this method on the molecular 
graph of a micelle-like chiral dendrimer to obtain an exact formula for the 
Wiener index of this class of dendrimers. Our method is efficient and can 
be applied on other classes of dendrimers. 
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TUTTE POLYNOMIAL OF AN INFINITE CLASS  
 OF NANOSTAR DENDRIMERS 

 
 

G. H. FATH-TABAR∗, F. GHOLAMI-NEZHAAD  

 
 

ABSTRACT. Tutte polynomial T(G,x,y), is a precise topological description 
of an undirected graph G with two variables, which gives some information 
about the connectivity of the graph. Dendrimers are hyper-branched nano-
structures with rigorously tailored architecture. In this paper, the formula for 
Tutte polynomial of an infinite nanostar dendrimer is derived. 
 
Keywords: Dendrimer, Tutte polynomial. 

 
 
 
 
INTRODUCTION 

Dendrimers are hyper-branched macromolecules showing a rigorous, 
aesthetically appealing, architecture. They are synthesized, in a controlled 
manner, basically by two strategies: the divergent and convergent approaches. 
In the divergent methods, dendrimers are built up starting from a core out to 
the periphery. In each repeated step, a number of monomer units react with 
the end groups of the already existing periphery to add a new shell or 
generation. By each successive generation, the number of local coupling 
reactions increases. In the convergent approach, dendrimers are built from 
the periphery towards the central core. These rigorously tailored structures 
show, often at the fifth generation, a spherical shape, which resembles that 
of a globular protein. The size of dendrimers reaches the nanometer scale. 
The end groups can be functionalized, thus modifying their physico-chemical or 
biological properties [1]. Dendrimers have gained a wide range of applications 
in supramolecular chemistry, particularly in host-guest reactions and self-
assembly processes [2-4]; their molecular graphs have been studied by the 
Mathematical-Chemistry tools [5-7].  

Tutte polynomial T(G,x,y), is a precise topological description of an 
undirected graph G with two variables, which gives some information about 
the connectivity of the graph [8]. In order to define Tutte polynomial we 
need some notations.  
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Suppose G is an undirected graph with the vertex set V(G) and the 
edge set E(G). Next, )(GEe∈  is neither a loop nor a bridge, then G-e is a 
graph in which the edge e=uv has been removed. The edge contraction G\e 
is obtained by linking the endpoints of edge e=uv together and making that 
edge as one vertex, (Figure 3). Then the Tutte polynomial of G is defined by 
the recurrence relation T(G) = T(G-e) + T(G\e). If G contains just i bridges 
and j loops, T(G,x,y) = xiyj. Also, TG = 1 when G has no edges. By the above 
mathematical notations, we have:  

 

1 if E(G)    
T(G- , , )  if  is a bridge  edge

T(G, , )   = .
T(G- , , ) if  is a loop,

T(G- , , ) T(G\ , , )  otherwise

x uv x y uv
x y

y e x y e
uv x y uv x y

= ∅⎧
⎪
⎪
⎨
⎪
⎪ +⎩  

 

In this paper, we derive the formula for computing the Tutte polynomial 
of the Nanostar Dendrimer Ns[n], Figure 1. 

 
Figure 1. Nanostar dendrimer Ns[2]. 

 
MAIN RESULTS 

Suppose G is an undirected graph with the vertex set V(G) and the 
edge set E(G). The vertices v and u of V(G), are in relation α (vαu), if there 
is a path in G connecting u and v. Each vertex is a path of length zero; so α 
is a reflexive relation. Moreover, we can easily prove that α is both symmetric 
and transitive. Thus α is an equivalence relation on V(G), and its equivalence 
classes are called the connected components of G. Then the Tutte polynomial 
is defined as, 

∑ ⊆
−+− −−=

EA
VAAcEcAc yxyxGT ||||)()()( )1()1(),,( , 

where, c(A) denotes the number of connected components of the graph of 
the vertex set V and the edge set A.  
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Figure 2. Denderimer D[2]. 
 

For example, let G be a tree with n vertices, then T(G, x, y) = xn -1 , 
because all the edges in a tree are bridges. The dendrimer D[n] in Figure 2 

is a tree with 2×3n+1-1 vertices, thus 232 1

),],[( −× +

=
n

xyxnDT . 
The Figure 1 has been constructed by joining six Ns[0] units to the 

hexagons in the outer layers, as detailed in Figures 3 and 4.  
 

 

 

 
Figure 3. Ns[0] and Ns[0]-H1+C5. Figure 4. Ns[1]. 

 

Lemma 1. Let H be a hexagon. Then ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
− y

x
xx
1

 =   y)     x,T(D[H],
6

. 

Proof. By using the formula of Tutte polynomial, we have: 
 

5 
5

5 4
4

5 4 3
3

6

T(D[H],   x,  y)  x T(D[C ],   x,  y)

                          x T(D[C ],   x,  y) 

                          x T(D[C ],   x, y) 

                          .
1

x

x x

x x y
x

= +

= + +

= + + +

−
= +

−
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To compute the Tutte polynomial of Ns[n], we proceed inductively 
but at first, we compute T(Ns[0], x, y) in the following 

Lemma 2. T(Ns[0], x, y) = .
1

 3
36

xy
x

xx
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

 

Proof. Suppose H1, H2 and H3 are hexagons in Ns[0]; then 
5 

1 1 5

5 4 
1 1

1 4

T(Ns[0],   x,  y)  x T(Ns[0] - H ,   x,  y) T(Ns[0] - H C ,   x,  y)

                          x T(Ns[0] - H ,   x,  y) x T(Ns[0] - H ,   x,  y)
T(Ns[0] - H C ,   x,  y)

                         

= + +

= + +
+

5 4 
1 1

3 
1 1 3

6

1

 x T(Ns[0] - H ,   x,  y) x T(Ns[0] - H ,   x,  y)

x T(Ns[0] - H ,   x,  y)+T(Ns[0] - H C ,   x,  y) 

                           ( [0] , , ),
1

x x y T Ns H x y
x

= + +

+

⎛ ⎞−
= + −⎜ ⎟−⎝ ⎠

 

where  Ns[0]-H1 + Ci  is constructed from Ns[0] by removing  H1 and  replacing  
Ci . As we did in the above, 

T(Ns[0], x, y)= ).,,]0[(
1 21

26

yxHHNsTy
x

xx
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−

 

Thus, T(Ns[0], x, y) = ).,,]0[(
1

 321

36

yxHHHNsTy
x

xx
−−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−

This 

implies that  

T(Ns[0], x, y) = .
1

 3
36

xy
x

xx
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

 

Lemma 3. T(Ns[1], x, y) = .
1

 x
126

15
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
− y

x
xx

 

Proof. By a similar proof as Lemma 2, we can see that 

T(Ns[1], x, y) = ).,],0[(
1

 12
96

yxNsTxy
x

xx
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

 

Thus, T(Ns[1], x, y) = .
1

 x
126

15
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
− y

x
xx

  

Theorem 4. T( Ns[n], x, y ) = .
1

 x
6296

742 1
−×

+×
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⎞
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Proof. Suppose b[n] and h[n] denote the number of bridges and hexagons of 
Ns[n], respectively. It is easy to see that b[n] = 2 × 4n+1 + 7 and h[n] = 9× 2n - 6. 
Thus b[n] = b[n-1] + 6 × 4n bridges and h[n] = h[n-1]+9× 2n-1 hexagons. 
Now, by using the definition of Tutte polynomial for bridges and hexagons 
of Ns[n] - Ns[n-1], and lemma 2, we have  

).,],1[(
1

 x=  y)     x,T(Ns[n],
1

n
296

46 yxnNsTy
x

xx
n

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

−×

×  

For solving this recursive sequence, we write  

.
1

 x=  
),],1[(

y)     x,T(Ns[m], n

2m

296
46

2

1

m

∏∏ =

×

×
=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−

−

m

y
x

xx
yxmNsT

n

m
 

This implies that 

).,],1[(
1

 x=  y)     x,T(Ns[n],
18296

842 1n

yxNsTy
x

xx
n −×

−×
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
−+

 

Therefore by Lemma 3,  

.
1

 x=  y)  x,T(Ns[n],
6296

742 1
−×

+×
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⎠

⎞
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⎝

⎛
+

−
−+

n

n
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x
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This completes the proof.  
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ABSTRACT. The Balaban index J is one of the oldest topological indices 
introduced by the Romanian chemist, A. T. Balaban. The chemical meaning 
of this topological index was investigated in several research papers. The 
aim of this paper is to introduce a new algebraic method for computing 
Wiener and Balaban indices of dendrimers. 
 
Keywords: Dendrimer, Balaban index. 
 
 
 

INTRODUCTION  

A topological index for a graph G  is a number invariant under the 
automorphism group of G . These numbers have been proposed for the 
characterization of chemical structures. The Wiener index, one of the oldest 
descriptors, was proposed by H. Wiener [1]. This topological index is defined 
as the sum of all distances in the hydrogen-depleted graph representing the 
skeleton of a molecule [2]. 

For a connected and simple (molecular) graph G , let )(GV  be a finite 
non-empty set of vertices/atoms and )(GE  the set of edges/bonds. The distance 
between the vertices x  and y , ),( yxd , is defined as the length of a minimal 
path connecting x  and y . The summation of all distances between a fixed 
vertex x  and all other vertices of G , is denoted by )(xd .  

The Balaban index is a topological index introduced by Balaban about 

30 years ago [3,4]. It is defined as ∑
+μ

=
=

−

uve
vdudmGJ 5.0)]()([

1
)( , where 

1+−=μ nm  is called the cyclomatic number of G , with m  being the number 
of edges and n  the number of vertices of G . The Balaban index is one of the 
widely used topological indices for QSAR and QSPR studies, see [5−10] for 
details. 
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Two groups of problems for the topological indices associated to a 
graph can be distinguished. One is to ask the dependence of the index to 
the graph and the other is the calculation of these indices efficiently. For the 
Wiener index, the greatest progress in solving the above problems was 
reported for trees and hexagonal systems in [11-13]. Another method is to 
use the Group Theory, in particular the automorphism group of the graph 
under consideration [14].  

Throughout this paper, our notations are standard and taken mainly 
from the standard books of graph theory as like as [15]. In this paper we continue 
our earlier works [16−22] on computing topological indices of dendrimers and 
derive a formula for the Balaban index of an infinite class of dendrimers. We 
encourage the reader to consult papers [23−27] for mathematical properties 
of the Balaban index, as well as basic computational techniques. 

 

Figure 1. The molecular graph of a dendrimer with 52 vertices. 
 
 

RESULTS AND DISCUSSION 
In the recent years, some topological indices such as the Balaban 

index has attracted the interest of many chemists, mathematicians and computer 
scientists and has motivated a large number of research papers involving 
extremal properties and applications. In this section, we apply an algebraic 
procedure to obtain formula for computing the Balaban index of an infinite 
class of dendrimers, Figure 1. For this purpose we need some concepts. 

Let G  be a connected graph and let v  be a vertex of G . The 
eccentricity )(Ge  of v  is the distance to a vertex farthest from v . So, 

}:),(max{)( Vuvudve ∈= . The centre of G  we call all vertices with the 
minimum eccentricity.  

Suppose H  and K  are two groups and K  acts on the set Ω . The 
wreath product of KH ~  is defined as the set of all ordered pairs ),( kf  where 

Kk ∈  and Hf →Ω:  is a function, such that ),(),)(,( 212211 kkgkfkf =  and 
)()()( 1

21
kififig = . Observe if Ω , H  and K  are finite then |||||~| || KHKH Ω= . 

Let’s begin by making an isomorphic copy kH  of H  for each Kk ∈ . Now 
we can let K  act on the right as an automorphism of direct product of all of 
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these kH  by defining kgkgk Haga ∈=).(  where Kg∈  and kk Ha ∈ . So 

HKKH Kk ∝⊕= ∈~ . 
Proposition. In the graph G , if )(GAut  acts on )(GV  and the orbits of this 

action are 0V , 1V , … , kV  then ∑
=

=
k

i
ii xdVGW

1

)(||
2
1)(  where ii Vx ∈ . If 

)(GAut   acts on )(GE  and the orbits of this action are 1E , 2E , … , kE  

then ∑
= −+

=
k

i ii

i

xdxd
EmGJ

1 1 )()(
||

1
)(

μ
 where iii Exx ∈−1 . 

 
Proof. It is sufficient to show that if )(GAut∈α  then ))(()( udud α=  that is 
evident. 

 

Define D[k] as the dendrimer molecule depicted in Figure 2. We 
label the vertices of D[k] by 0, 1, ..., 2 × (3k – 1). If an edge ij  ( ji < ) is 
shown by j  then the edges of D[k] can be labelled by 1, 2, ..., 2 × (3k – 1). So, 
the number of vertices and edges of D[k] are 1 + 2 × (3k – 1) and 2×(3k – 1), 
respectively. 

 
Figure 2. The Dendrimer Molecule D[4]. 

 
Theorem. The automorphism group of D[k] is isomorphic to the wreath 
product 43 ~ SS  where 4S  act on )}13(2,...,2,1{ −×=Ω k . 
Proof. Fix a vertex 0x  as root and assume that ])[( kDAut∈α . Then for 
vertex v  in level i , Figure 2, )(vα  is also in level i , since v  and )(vα  
have the same eccentricity. Consider the action of 4S  on )}13(2,...,2,1{ −× k . 
Therefore ])[( kDAut  is isomorphic to the wreath product of group 3S  via 
the permutation group 4S .     █ 
Corollary 1. The orbits of ])[( kDAut  under its natural action on ])[( kDV  
are }0{0 =V , }4,3,2,1{1 =V , … , )}13(2),...,13(21{ 1 −×−×+= − kk

kV .  
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Let ii Vx ∈ , ki ≤≤0 . In each orbit )()( ixdvd =  when v  is a fixed 
element of iV . Define:  

1210 3)(3).3(3).2(3).1(),( −++++++++= ststttst Lα .  
Then obviously ]3).122(21[41),( ststst −++−=α . Therefore,  

∑
=

−−+−+−+=
i

j
i jkjijiikkixd

0
)],(2[),0(),()( ααα  

To simplify above equation, we compute )( ixd . We claim that 

i
k

kk
i ikxd −

+

+×+−+= 3).
2

3().32(3).
2
52(1)(

1

.  

We now compute the Wiener and Balaban indices of D[k]. The 
Wiener index of a graph G  is half of the summation of all )(vd  over all 
vertices of G . From the orbits of the action of ])[( kDAut  on ])[( kDV , one 

can see that ⎟
⎠

⎞
⎜
⎝

⎛
+×= ∑

=

−
k

i
i

i xdxdGW
1

0
1 )()](34[

2
1)( . So the Wiener index of  

D[k] is given by the following formula: 

)3)1144480384(3)54016416(

3)16144(164.(
43)424(3)11232(

1.
4
1])[(

3234223

2
22

kk

k
kk

kkkkkkk

kkk
kkk

kDW

−+−−++−−+

+++
+−++−

=

 
Corollary 2. The orbits of the action of ])[( kDAut  on ])[( kDE  are 

}4,3,2,1{1 =E , … , )}13(2,),13(21{ 1 −×−×+= − kk
kE K .  

 
Since D[k] is  a tree, 0])[( =kDμ  and next, 

∑
= −

−×
−×=

k

i ii

i
k

xdxd
kDJ

1 1

1

)()(
34)13(2])[(  

To simplify above equation, we first compute )()( 1 ii xdxd − . We have: 

ikik

ikkkkkkk

kkkkk
ii

i

kiik

kkkxdxd

222

222222

2222
1

3)3.
4

27(3)3.12(

3)3123.183.6()3.4()383.143.4(

)343143.
4
45343.71()()(

−−

−

−

++

+−+++−

++−++−=

  

Define: iii
ii iiixdxdkif 22

1 333)()(),( −−−
− +++++== μδγλβα , where,  
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kkkkk kkkk 2222 343143.
4
45343.71)( +−++−==αα  

kkk kk 22 383.143.4)( +−== ββ  
kk 23.4)( == λλ  

kkk kk 22 3123.183.6)( +−== γγ  
kk 23.12)( == δδ  

kk 23.
4

27)( == μμ  

Therefore,  

∑
=

−

−=
k

i

i
k

kif
kDJ

1

1

),(
3)13.(8])[(  

In the following table, the Balaban index ])[( kDJ  is computed, for 
some k . 

 
Table 1. The Balaban index of D[k], k ≤ 20. 

k ])[( kDJ  k ])[( kDJ  k ])[( kDJ  k ])[( kDJ  
1 3.023715783 6 150.3527448 11 17983.21943 16 2.896950741×106 
2 6.365606476 7 374.3679197 12 48967.03417 17 8.142315294×106 
3 12.85128466 8 958.8910307 13 1.344850778×105 18 2.297691366×107 
4 27.51789936 9 2509.007693 14 3.720218719×105 19 6.506856261×107 
5 62.72145108 10 6673.758448 15 1.035416212×106 20 1.848495377×108 

 
CONCLUSIONS 

In this paper an algebraic method for computing Balaban index of 
dendrimers is presented. By this method the Wiener and Balaban indices of 
an infinite class of dendrimers are calculated. It is possible to extend our 
method for a general tree. These indices can be used in QSAR/QSPR studies. 
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ABSTRACT. In this paper we consider a TUC4C8(S)[p,q] nanotube lattice 

where kpq =  and we compute its diameter. 
 
Keywords: TUC4C8 (S)[p,q] Nanotube lattice, Diameter of graph, Dual graph 

 
 
 

INTRODUCTION  

 Let G  be a molecular graph with )(GV  and )(GE  being the set of 
atoms/vertices and bonds/edges, respectively. The distance between vertices 
u  and v  of G  is denoted by ),( vud  and it is defined as the number of edges 
in a path with minimal length connecting the vertices u and v .  

A topological index is a numerical quantity derived in an unambiguous 
manner from the structural graph of a molecule and it is a graph invariant.      
 The Wiener index of a graph represents the sum of all distances in 
the graph. Another index, the Padmakar-lvan (PI) index, is defined as 

, where  is the number of edges 
of G lying closer to u than to v, and  is the number of edges of G 
lying closer to v than to u and summation goes over all edges of G. Also, the 
Szeged index of a graph G  is defined as 1 2( )

( ) ( | ) ( | )
e E

Sz G n e G n e G
∈ Γ

= ⋅∑ , 

where )|( Geni  is the number of elements in  
)},(),(|)({)|( xvdxudGVxGeN <∈= and )(},{ GEvue ∈= . 

 For  nanotubes (Figure1) the Wiener , 
Padmakar-lvan  and Szeged  indices are topological indices that have 
been computed in refs. [1-5]. 
 One important application for graphs is to model computer networks 
or parallel processor connections. There are many properties of such networks 
that can be obtained by studying the characteristics of the graph models. 
For example, how do we send a message from one computer to another by 
using the least amount of intermediate nodes? This question is answered 
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by finding a shortest path in the graph. We may also wish to know what is 
the largest number of communication links required for any two nodes to 
talk with each other; this is equivalent to find the diameter of the graph.  
 

 
Figure 1:  Nanotube  

 

 Let  lattice (Figure 2) be a trivalent decoration 
made by alternating squares 4C and octagons 8C . In [4] the diameter of a zig-
zag polyhex lattice have been computed; in this paper the formula for the 
diameter of a  lattice will be derived. 
 

 

Figure 2:   lattice 
 
RESULTS AND DISCUSSION 
 In this section we compute the diameter of the graph 

 where kpq = and pk ,  are positive integers.  
 

Definition 1. In  with  any vertices of degree 2 
and all vertices of degree 3 which are adjacent to a vertex of degree 2 is 
called boundary vertices (see Figure 3); a vertex which is not a boundary 
vertex is called an interior vertex. The set of all boundary vertices of G are 
denoted by . 
 

Lemma 1. Let )(Gdd = be the diameter of . Then for any wv −  path of 
length d , we have )(},{ GBwv ∈ . 
 

The Proof is given by Lemma 2 [4].   
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Lemma 2. Suppose lB  and βB  are the sets of left side and right side boundary 
vertices of G, respectively.  If we sort the vertices of these sets from up to down 
such that },,,{ 21 nuuuB Kl = and },,,{ 21 nvvvB K=β , then ),( 1 nvud = )(Gd . 
 

Proof. We consider the inner dual of , (Figure 3) 
 
                                                                             
 
 
                     lB                                                        βB              B r

             

                                          
 
    
 
                                                                              

 

Figure 3: TUC4C8(S) lattice and its dual graph 
 

Since 
 

 
and 
                               .   
                                
 

Then by symmetry of G we conclude that . 
 

Theorem 1. Let , where pq =  and qp,  are positive 
integers. Then we have 15)( −= pGd . 
Proof. The proof is by induction on . In case ,  is an octagon with 
diameter 4 and the theorem is obviously true. Suppose that the theorem is 
true for the case  and consider a TUC4C8(S) [p,q] lattice of size 

nn× . By Lemma 2, we have . If we delete the last two rows 
and columns it is easy to see that . Hence,  

.156]2)1(5[)( −=+−−= pnGd  
 

Theorem 2. Let, , where kpq =  and qp,  are positive 
integers. Then we have 1)14()( −+= pkGd . 
Proof. We prove the theorem by induction with respect to k. As we have seen for 
Theorem 1, the assertion is true for . Let and suppose that the 
theorem is true for kpq = . Now consider a , lattice with 

pkq )1( += . We may assume that the lattice contains  blocks 
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 of  lattice each of size )( pp × . Obviously 
it is enough to find the length of shortest path from vertex  to vertex  

.  
 By symmetry of  lattice, we conclude that 

. 
Hence 1)14()( −+= pkGd . 
 
EXAMPLES 
 In this section, we give some examples in the following tables. The 
diameter calculations were done by the TOPO-CLUJ software package [6]. 
In Table 1 we consider some special cases where , while in Table 2, 
we consider cases for . 

Table 1. Some cases of  with  

 
2 9 
3 14 
4 19 

Table 2. Some cases of  with  

    
(distance matrix) (Theorem 2)

2 3 6 26 3(8+1)-1=26 
3 3 9 38 3(12+1)-1=38 
3 4 12 51 4(12+1)-1=51 
4 3 12 50 3(16+1)-1=50 
4 4 16 67 4(16+1)-1=67 
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ABSTRACT. The aromaticity of the heterobenzenes containing 15-group 
elements, namely the six-membered homocycles (λ3-X)6 (X = CH, N, P, As) and 
the six-membered alternant heterocycles (λ3-X- λ3-Y)3 (X, Y = CH, N, P, As) is 
investigated using magnetic and geometric criteria at B3LYP/6-31G (d,p) 
level.  

The NMR isotropic shielding values of a molecule of H2 placed at a 
distance of 2.5Å above the center of the heterobenzenes were computed 
using the GIAO method at 6-31G(d,p) level. The results are compared with 
the negative values of the absolute magnetic shielding, computed at the center 
of ring (NICS index), at B3LYP/6-31G (d,p) level. An angle-based index is used 
as geometric criterion for the evaluation of the aromatic character.  

 
Keywords: heterobenzenes, aromaticity, shielding increments, angle-based index   

 
 
 
INTRODUCTION 

The benzene ring, with its delocalized 6 π-electrons, planar geometry, 
bond lengths equalization and ability of sustaining a diatropic ring current 
remains the key-molecule for the evaluation of the aromatic character [1]. 
There are also known hetero-analogues of benzene, compounds obtained by 
replacing one or many CH groups with isovalent atoms that show similar 
properties with the above-mentioned ones (an example is the pyridine). Hetero-
analogues of benzene with dicoordinated trivalent atoms of 15 group (N, P, As) 
of type (λ3-X-λ3-Y)3 (where X, Y = CH, N, P, As - Figure 1) have been investigated 
in order to evaluate their possible aromatic character. Our previous papers [2, 3] 
reported studies regarding the stability of homo- and heterobenzenes containing 
15 group atoms, estimated by their heat of formation computations [2] and 
also an evaluation of the aromatic character of the heterobenzenes series by 
means of geometric, magnetic and chemical reactivity criteria [3].  
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Concerning the use of the magnetic criteria to evaluate the aromaticity, 
one of the most used indices is NICS (Nucleus Independent Chemical Shift) [4], 
computed at the center of the molecule (NICS(0)) or at 1Å distance above 
the molecule’s geometric center. Recent work of Martin et al. [5, 6] report 
the use of computed NMR shielding effects on a molecular probe (a diatomic 
hydrogen molecule, placed at a 2-2.5 Å above the geometric center of the ring) 
in order to evaluate the aromatic character of fused hydrocarbons. The same 
methodology was applied to the heterobenzenes of series (λ3-X-λ3-Y)3 (where 
X, Y = CH, N, P, As) and the shielding values of different heterobenzenes on 
the diatomic hydrogen probe (placed at 2.5 Å above the center of molecule) 
were compared with NICS(2.5) values. Moving the H2 probe along x and y 
coordinates of the geometric center of the rings (step size 0.5 Å, three steps in 
each direction) leads to a complete evaluation of the shielding/deshielding 
effects.  

Y
X

Y

X
Y

X

 
X, Y: CH, N, P, As 

Figure 1. General formula of the heterobenzenes (λ3-X-λ3-Y)3 
 
 
RESULTS AND DISCUSSION 

In a previous paper [3] we reported the evaluation of the aromatic 
character of the same heterobenzenes series using bond length- and bond 
order-based indices. No concluding results were obtained, mostly due to 
the D3h and D6h symmetry of the compounds that strongly influences the 
values of bond length- and bond order-based indices. A possible method 
for avoiding such situation is the use of geometric angle-based indices.  
 Doerksen et al. [7, 8] mentioned two indices based on alternance of 
the angles, namely AVGNEXT and ADIFFPC and they assigned the maximum 
value (100) to benzene ring and the minimum value (0) to a six-membered cycle 
with alternant angles of 110° and 130°, respectively. For the heterobenzene 
series of this study, the minimum value will correspond to a six-membered 
cycle with alternant angles of 100° and 135°, respectively. 
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Table 1. Angle-based geometric indices, using geometries  
optimized at ab initio level (HF/6-31G) 

 
Heterobenzene AVGNEXT ADIFFPC 

C6H6 100 100 
(CH-λ3-N)3 71.4 90.1 
(CH-λ3-P)3 22.1 38.7 
(CH-λ3-As)3 17.1 31.3 

(λ3-N)6 100 100 
(λ3-N-λ3-P)3 38.0 61.6 
(λ3-N-λ3-As)3 41.1 65.3 

(λ3-P)6 100 100 
(λ3-P-λ3-As)3 97.1 99.9 

(λ3-As)6 100 100 
 

As it can be seen, the maximum value of both indices is obtained for 
the homocycles (λ3-X)6 but, even in this case, the angle-based geometric 
index is influenced by the symmetry of molecules. 

NICS(2.5) values and shielding increments Δσ were computed for the 
heterobenzenes series (λ3-X-λ3-Y)3 (where X, Y = CH, N, P, As) at B3LYP/6-31G 
level (Table 2). 

 
Table 2. NICS (2.5) (ppm) and shielding increments Δσ (ppm) 

 computed at ab initio level (B3LYP/6-31G) 

Heterobenzene NICS 2.5 (ppm) Δσ (ppm) 
C6H6 -0.2935 0.974 

(CH-λ3-N)3 -2.7228 3.707 
(CH-λ3-P)3 -3.6526 4.439 
(CH-λ3-As)3 -3.8539 4.478 

(λ3-N)6 -2.9665 4.353 
(λ3-N-λ3-P)3 -1.6690 2.647 
(λ3-N-λ3-As)3 -2.0210 2.362 

(λ3-P)6 -5.7005 6.151 
(λ3-P-λ3-As)3 -6.7035 6.447 

(λ3-As)6 -18.6155 7.203 
 

A qualitative comparison of NICS(2.5) index and shielding increments Δσ 
values shows a very similar trend. Higher values (even greater than for the 
benzene ring) are recorded for the heterobenzenes (λ3-P)6, (λ3-P-λ3-As)3, 
(λ3-As)6 and predict a pronounced aromatic character. Our previous study [3] 
regarding the estimation of aromaticity of the heterobenzenes series using the 
magnetic (NICS(0) and NICS(1)) and reactivity-based criteria showed similar 
results; the highest NICS values belong to the heterobenzenes having the 
closest geometry to the benzene ring (equalization of bond lengths and bond 
angles), namely: (λ3-N)6, (λ3-P)6, (λ3-P-λ3-As)3 and (λ3-As)6.  
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The same explanation seems to be appropriate for the values obtained 
for the shielding increments. The results presented in Table 1 show that all the 
heteroanalogues of benzene have positive shielding increments, revealing 
a possible aromatic character in all of the cases. The largest values of both 
NICS(2.5) index and Δσ are obtained in case of heterobenzenes (λ3-P)6, 
(λ3-P-λ3-As)3 and (λ3-As)6.  

Shielding increments have also been computed at three different 
steps in x and y directions (0.5 Å, 1.0 Å, 1.5 Å); the results are presented in 
Table 3 and Table 4.  

 
Table 3. Shielding increments Δσ (ppm) computed in three different points  

along the x axis (B3LYP/6-31G level) 

Heterobenzene Δσ (x=0.5) (ppm) Δσ (x=1.0) (ppm) Δσ (x=1.5) (ppm) 
C6H6 0.974 0.938 0.896 
(CH-λ3-N)3 3.444 2.789 2.056 
(CH-λ3-P)3 4.147 3.385 2.463 
(CH-λ3-As)3 4.173 3.381 2.446 
(λ3-N)6 4.076 3.373 2.520 
(λ3-N-λ3-P)3 2.513 2.162 1.678 
(λ3-N-λ3-As)3 2.232 1.902 1.467 
(λ3-P)6 5.925 5.325 4.509 
(λ3-P-λ3-As)3 6.215 5.600 4.778 
(λ3-As)6 6.690 6.315 5.453 

 
Table 4. Shielding increments Δσ (ppm) computed at three different points  

along the y axis (B3LYP/6-31G level) 

Heterobenzene Δσ (y=0.5) (ppm) Δσ (y=1.0) (ppm) Δσ (y=1.5) (ppm) 
C6H6 1.009 0.936 0.898 
(CH-λ3-N)3 3.445 2.804 2.065 
(CH-λ3-P)3 4.158 3.456 2.573 
(CH-λ3-As)3 4.188 3.472 2.601 
(λ3-N)6 4.076 3.375 2.521 
(λ3-N-λ3-P)3 2.505 2.119 1.579 
(λ3-N-λ3-As)3 2.224 1.867 1.391 
(λ3-P)6 5.925 5.308 4.395 
(λ3-P-λ3-As)3 6.219 5.591 4.670 
(λ3-As)6 6.961 6.300 5.323 

 
The results presented in Table 2 and Table 3 show insignificant 

differences between the values of the shielding increments computed along 
x and y axes and this a possible consequence of the symmetry of the studied 
heterobenzenes.  



EVALUATION OF THE AROMATIC CHARACTER OF λ3-HETEROBENZENES … 
 
 

 151 

CONCLUSIONS 
Computations of AVGNEXT and ADIFFPC indices lead to maximum 

values for the benzene ring, as well as for the homocycles (λ3-X)6. The results 
prove the difficulties that appear in quantifying the aromatic character of the 
heterobenzene series (λ3-X-λ3-Y)3 by using the geometric criterion. In the 
absence of any experimental data, it is difficult to make statements regarding 
the identical values obtained for the geometric indices in case of benzene, 
hexazine (known as unstable compound) and hexaphosphabenzene and 
hexaarsabenzene.  

Using the magnetic criterion for evaluating the aromaticity, the results 
of NICS(2.5) index presented in Table 2 show negative values in case of all the 
heterobenzenes, thus predicting an aromatic character for all these compounds. 
As in the case of the angle-based geometric index, higher negative values of 
NICS index were obtained for the heteroanalogs of benzene (λ3-P)6, (λ3-P-λ3-As)3, 
(λ3-As)6. A similar situation is the one of the shielding increments Δσ, that also 
predict a strong aromatic character of the heterobenzenes (λ3-P)6, (λ3-P-λ3-As)3, 
(λ3-As)6 (Table 2). The very close values of the shielding increments computed 
in three different points along x and y axes also prove that the results may 
be a consequence of the geometry of the heterobenzenes series, especially of 
their symmetry. 
 
COMPUTATIONAL SECTION 

The heterobenzenes series have been first optimized at semi-empirical 
level (PM3 method) using MOPAC2009 program [9], then optimization at ab 
initio level (HF/6-31G) using Gaussian 03 package [10], has been performed. 
The geometries of all heteroanalogues of benzene are planar. NICS(2.5) 
indices have been computed at a 2.5 Å distance above the geometric center 
of each ring, using the GIAO method [g] at B3LYP/6-31G level. Computations 
of the shielding effects on the molecular probe of H2 have also been performed 
at B3LYP/6-31G level, first at 2.5 Å above the geometric center of each ring 
and then at three different points along the x and y axis of the center of the 
molecule (0.5 Å, 1.0 Å and 1.5 Å in each direction). The shielding increments 
(Δσ) were obtained by subtracting the shielding value corresponding to one of 
the H atoms of the H2 probe alone (26.77 ppm) [5] from the shielding value of 
the closest H atom of the H2 molecule relative to the heterobenzene plane.  
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ABSTRACT. The functionalization of single-walled carbon nanotubes (SWCNTs) 
is a timely topic in contemporary nanostructures literature. It is believed 
that modifications of SWCNTs properties could open the way towards real 
nanotechnology applications. In the present paper chemical functionalization 
of SWCNTs was performed to obtain first the carboxyl-functionalized species 
and then various synthetic approaches were investigated to obtain the target 
product (triethylene-glycol-functionalized SWCNTs), which can be used as a 
linker with medical purposes. The intermediate and final reaction products 
have been characterized by FT-IR spectroscopy, TEM analysis and micro-
RAMAN spectroscopy. 

 
Keywords: nanotechnology, carbon nanotubes, functionalization 

 
 
 
INTRODUCTION 

The concept of nanotechnology embraces applied science and 
technology. This field of study keeps developing day by day offering us 
information about the behavior of nanoparticles and their unique electrical, 
optical and magnetic properties [1]. Its practical use has many facets. This 
paper deals with the functionalization of SWCNT in order to increase their 
capacity of transporting therapeutic agents through cell membranes. 

Carbon nanotubes can be classified in tree classes: single walled 
(SWCNT), double walled (DWCNT) and multiwalled (MWCNT) carbon 
nanotubes. They only consist of sp2 hybridized carbon atoms (like the graphite), 
witch confer them a unique strength and toughness [2].     

Depending on conditions, SWCNTs can form aggregates or they can 
exist as isolated tubes. Their ends can be opened or closed (the closing cap 
includes pentagons, also).  

All SWCNTs can be represented by a pair of numbers, the so called 
chirality index (n, m) [3]. If n=m the tube is of armchair type, if one of the 
numbers is zero, then it is a zig-zag nanotube, and if n≠m≠0 the tube is 
chiral (Figure 1).  
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a  b  c  

a  b  c  

Figure 1. The tree types of SWCNTs (a – armchair; b – zig-zag; c - chiral) 
 

 Carbon nanotubes have incredible properties, such as hardness, 
thermal and electrical conductivity (all armchair nanotubes, 2/3 of the zig-
zag type and 1/3 of the chiral ones are metallic, and the remaining ones are 
semi-conductors). Their tensile strength is 75 times higher than that of the 
steel, while their density is 6 times lower. Carbon nanotubes (CNT) are very 
light materials, bearing a density as low as 1.33-1.4 g/cm3. Another excellent 
physical property of CNT is their elasticity which helps them regain their 
original form after bending4. CNT are not miscible with any kind of solution; 
they only make suspensions. They can be synthesized in various ways, such 
as: chemical vapor deposition, arc discharge, laser ablation etc. [4-7].  
 

RESULTS AND DISCUSSION  
In the proposed synthesis the intermediates and the product were 

characterized by IR and microRaman spectroscopy, respectively and TEM 
microscopy as well. By using the IR spectroscopy allowed one to follow the 
reaction steps and verify the intermediates the reaction product, respectively.  

The first intermediate, SWCNT-COOH, was characterization by IR 
analysis as shown in Figure 2. This spectrum proves the presence of the 
carbonyl group (-C=O) at 1655 cm-1, the carboxyl group (–COOH) group 
can be observed at 1395 cm-1 and 3137 cm-1 and the carbon-oxygen bond 
(-C-O) shows a peak at 1066 cm-1. 

The IR spectrum of the second intermediate (SWCNT-COCl) (Figure 3) 
proves the presence of the group C=O of the chloride acid at 1705 cm-1 
while the peak corresponding to the hydroxyl group from COOH (1395 cm-1 
and 3137 cm-1) disappeared.  
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Figure 2. IR spectrum of SWCNT-COOH 
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Figure 3. IR spectra of SWCNT-COCl 

 
The IR spectrum of the final product is presented in Figure 4. 
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Figure 4. IR spectrum of SWNT-CO-O-(CH2)2-O-(CH2)2-O-(CH2)2-OH 



MELINDA E. FÜSTÖS, ERIKA TASNÁDI, GABRIEL KATONA, MIRCEA V.DIUDEA 
 
 

 156 

 The IR spectrum of the target product shows a peak at 1107 cm-1 which 
proves the presence of an ether bond (C-O-C), another peak at 1400 cm-1 of the 
–CH2 group from the tryethylene-glycol. The peak at 1705 cm-1, corresponding 
to the C=O bond from the chloride acid, (Figure 3) was missing but a peak at 
3137 cm-1, for the –OH group from the products chain end appeared. 
 The TEM microscopy images are shown in Figure 5: in comparison 
to the non-functionalized SWCNTs (5.a), the –COOH groups attached to the 
nanotubes are clearly seen in 6.b and 6.c (the final product).   
 

               
a – zoom of 120000x                                b – zoom of 100000x 

 
c – zoom of 100000x 

Figure 5. a – SWCNT; b – SWCNT-COOH; c - SWNT-CO-[O-(CH2)2]3-OH 
 
The microRaman spectroscopy is a very sensitive tool, which allows  

one to observe fine structural modifications. From the spectrum represented in 
Figure 6 (a, b and c) we can see two important peaks: at 1585 cm-1 the so called 
G-band (a lower intensity band) and at 3186 cm-1 a higher intensity band. The G 
band for non-functionalized SWCNT was recorded at 1583 cm-1, for SWCNT-
COOH at 1582 cm-1 while in the case of final product at 1587 cm-1.    
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Figure 6. a – SWCNT; b – SWCNT-COOH; c - SWNT-CO-[O-(CH2)2]3-OH 
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Because in all three no any significant deviations were seen, especially 
at the G band, we can conclude that, during the functionalization processes, 
the carbon nanotubes did nof suffer any structural modifications. 
 

CONCLUSIONS  
Based on the IR, TEM and microRaman analysis, we proved the 

synthesis of the intermediates and the final product, that will be used in further 
biological studies, with the purpose of transporting therapeutic agents through 
cell membranes into the desired cells. 

 
EXPERIMENTAL SECTION 

The experimental part of this study was elaborated relying on the 
literature data available so far, the reaction parameters and reactive quantities 
being optimized according to available materials and resources. The experiment 
has multiple steps, represented in Figure 7.  

 

 

 
Figure 7. Experiment steps 

 
 
The first step consists in the functionalization of SWCNTs by energic 

oxidation, with a mixture of H2SO4/HNO3. The obtained carbonyl functionalized 
SWCNTs were then reacted with SOCl2 resulting the acid chloride functionalized 
species. As a last reaction step, the above obtained functionalized SWCNTs 
were reacted with triethylene-glycol in order to obtain the desired product: 
triethylene-glycol-functionalized SWCNTs.  

The importance of this study relies on the fact that these kind of 
functionalized SWCNTs have medical use, also.  
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The first step of the synthesis, as we mentioned above, was the 
synthesis of carboxyl functionalized SWCNTs and was performed according to 
C. Lynam et. al6. The procedure was the following: 20 mg of SWCNTs were 
suspended in a mixture of H2SO4/HNO3 (ratio 3:1) in a well dried flask and 
left in an ultrasonic bath for 8 hours. After this reaction time the obtained 
mixture was diluted with bi-distilled water afterwards being neutralized with 
a 20% NaOH solution to pH 7. Later, the solution was filtered through PTFE 
membrane and the product dried.  

The SWCNT-COOH intermediate, weighted 8 mg, was further 
suspended in a freshly distilled mixture of SOCl2/DMF (ratio 20:1) in a well dried 
flask7. This time the ultrasonic bath lasted for 20 minutes. Afterwards the mixture 
was refluxed in a stiring oil bath for 22 hours at 70°C. After cooling down, the 
mixture was distilled (to half of its volume), this way the remaining undesired 
SOCl2 being removed. To make sure that all of the SOCl2 was removed, the 
mixture was washed through with dioxane. The next step was rotavaporizing 
the mixture and than drying it for 48 hours under vacuum dryer.  

The last step was the obtaining of the final product: triethylene-glycol-
functionalized SWCNT s (SWCNT-CO-O-(CH2)2-O-(CH2)2-O-(CH2)2-OH)). First 
we attached to the SWCNT-COCl a six ringed 1,6-diol in order to position 
the hydroxyl group from the end of the chain further away from the carbon 
nanotubes. 4 mg SWCNT-COCl was suspended in a mixture of 40 μL 
triethylene-glycol and 1,5 mL 1,4-dioxane in a previously well dried flask. 
This was followed by sonication for 10 minutes and then refluxed for 52 hours 
at 110°C, under stirring on an oil bath. After cooling down, the mixture was 
filtered under vacuum and washed with 3x5 mL of THF (tetrahydrofuran) in 
order to remove the remaining triethylene-glycol, then dried for 24 hours in 
a vacuum dryer.  
 
Instruments Used 
 The ultrasonic bath used for the dispersion of SWCNTs: TRANSSONIC 
460/H, ELMA AUSTRIA, 100W, 40 kHz. To remove the remaining unwanted 
solvents we used the ROTAVAPOR P BÜCHI. The IR spectra of the intermediates 
was performed with a Fourier IR spectroscope (spectral range 7500-370 cm-1, 
rezolution > 0.5 cm-1, Michelson type interferometer, DLATGS detector). 
The analyzed samples were mixed with KBr and pressed into the form of a 
transparent tablete by hydraulic pressing. 
 For the electronmicroscopic illustration of the intermediates and of 
the final product, a transmission electron microscopy TEM was used (Hitachi 
Automatic TEM H7650, accelerating voltage 40-120 kV, zoom 200x-600000x). 
 For microRaman spectra, a FRA 106/S module was attached to the 
Fourier IR spectroscope, and to the module a microscope (Nikon ECLIPSE 
E400 – spectral range 3600-70 cm-1 for Stokes lines and 2000-100 cm-1 for 
the anti-Stokes lines, resolution > 1 cm-1, Nd:YAG laser, ultrasensitive D418-T 
Ge detector) was linked with an optical wire. 
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Chemicals Used 
 The starting material was SWCNT synthesized by Chengu Organic 
Chemicals Co. Ltd, with the following characteristics: diameter 1-2 nm, lenght 
~ 30 μm, purity > 90 tf%, special surface size (SSA) > 380 m2/g, electrical 
conductivity > 102s/cm, production method CVD (chemical vapor deposition). 
 Reagents: 98% sulfuric acid (H2SO4, Mw = 98.08 g/mol, ρf = 1.84g/cm-3), 
70% nitric acid (HNO3, Mw = 39.997g/mol, ρsz = 2.1g/cm3), sodium hydroxyd 
(NaOH), tionil chloride (SOCl2, Mw = 118.97g/mol, ρf = 1.638g/cm3), N,N-
dimethyl-formamide (DMF, Mw = 73.09g/mol, ρf = 0.944g/cm3), tryethylene-
glycol (C6H14O4, Mw =150.17g/mol, ρf =1,1g/cm3), tetrahyrofuran (THF, C4H8O, 
Mw = 72.11g/mol , ρf = 0.8892g/cm3). 
 
ACKNOWLEDGMENTS 

The authors thank for the financial support provided from the Scientific 
research project no. 42114/2008 within the PNCDI II program.  

The authors also thank for the financial support provided from programs 
co-financed by the SECTORAL OPERATIONAL PROGRAMME HUMAN RESOURCES 
DEVELOPMENT, Contract POSDRU 6/1.5/S/3 – „Doctoral studies: through science 
towards society". 

 
 
 

REFERENCES 
 
 
1. H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, Ch. Kramberger, and T. 

Pichler, Synthetic Metals, 2004, 141, 113 
2. S. Iijima, T. Ichihashi, and Y. Ando, Nature, 1992, 356, 776 
3. E.B. Barrosa, A. Joriob, G.G. Samsonidzef, R.B. Capazc, A.G. Souza Filhoa, 

J. Mendes Filhoa, G. Dresselhause, and M.S. Dresselhausf, Physics Reports, 
2006, 431, 261 

4. J. Kürti, Szén nanocsövek, Fizikai Szemle, 2007, 3, 106 
5. H. Dai, Accounts of Chemical Research, 2002, 35, 1035 
6. C. Lynam and A.I. Minett, Int. J. Nanotechnol., 2008, 5, 336 
7. Y. Wang, Z. Iqbal, and S.V. Malhotra, Chemical Physics Letters, 2005, 402, 96 



STUDIA UBB. CHEMIA, LV, 4, 2010 
 
 

APPLICATION OF NUMERICAL METHODS IN THE 
TECHNOLOGY OF HYDROXYAPATITE 

 
 

VALENTINA ROXANA DEJEUa, SILVIA TOADERb,  
BARABAS RÉKAa, PAUL-ŞERBAN AGACHIa 

 
 

ABSTRACT. Hydroxyapatite precipitation process involves the formation in 
the first phase of a solid-phase with amorphous structure (amorphous calcium 
phosphate), which in time turns into hydroxyapatite. Polynomial spline 
interpolation is a numerical method useful in mathematical modeling of this 
phase transformation process. By this method, experimental data are 
interpolated to obtain cubic spline polynomial function which can approximate 
reasonably well the experimental values of the degree of conversion at any 
pH between 8.5 ÷ 12. A very good agreement between the experimental 
and numerical results confirms the validity of the numerical procedure.  

 
Keywords: hydroxyapatite, phase transformation, numerical methods, cubic 
spline function  

 
 
INTRODUCTION  

Numerical methods are used to determine approximate solutions of 
complex problems and use only simple arithmetic operations [1]. One of the 
simplest methods of approximation is interpolation and involves choosing  
a function data, which has a predetermined finite number of points (∆): 

nxxxx ,...,,, 210  chosen from its domain of definition. There is more than one 
class of interpolation functions, such as rational functions for rational interpolation, 
spline functions (polynomial or exponential) for spline interpolation, interpolation 
trigonometric functions for periodic functions [2]. The most suitable class of 
interpolation function is that where one can find an element closer to the 
function that interpolates [3]. This category includes cubic spline functions. 
Cubic spline function for function f  and the above division (which are known 
values ii fxf =)( , ni ,...,1= ) satisfies the following three properties: 

- It is a "segmental polynomial", meaning that each interval ),( 1 ii xx −  
is a polynomial )(xSi  of degree 3 
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- two neighboring polynomials )(xSi  and )(1 xS i+  have the following 
properties: 

)()( 11 −− = iii xfxS ; for any ni ,...,1=     (1) 
)(')(' 1 iiii xSxS += , for any 1,...,1 −= ni    (2) 

General expresions for two adjacent cubic fuctions )(xSi  and )(1 xSi+  
are:  

)()()()()( xdxcxbxaxS iiiii ⋅+⋅+⋅+⋅= δγβα   (3) 
)()()()()( 11111 xdxcxbxaxS iiiii +++++ ⋅+⋅+⋅+⋅= τδγβ  (4) 

where: 
( ) ( )

( )2
1

1
2

)(
−

−

−
−−

=
ii

ii
i xx

xxxx
xa      (5) 

( ) ( )
( )2
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2
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−

−

−
−−

−=
ii

ii
i xx

xxxx
xb      (6) 

( ) ( ) ( )[ ]
( )3

1

11
2 2

)(
−

−−

−
−+−−

=
ii

iiii
i xx

xxxxxx
xc    (7) 

( ) ( ) ( )[ ]
( )3

1

1
2

1 2
)(

−

−−

−
−+−−

=
ii

iiii
i xx

xxxxxx
xd  .  (8) 

Properties (1) and (2) become:  
)()()(;)()( 111 iiiiiiii xfxSxSxfxS ===== +−− δγ    (9) 

 
β== + )()( '

1
'

iiii xSxS       (10) 

α=− )( 1
'

ii xS        (11) 
To solve mathematical problems (scientific calculations), advanced 

software systems such as Matlab, Mathematica, or Mathcad are used [2,4,5]. 
It is generally acknowledged that in the crystallization of calcium 

phosphate first occurs the formation of a precursor phase (amorphous calcium 
phosphate) which is subsequently dissolved or restructured as the precipitation 
reaction occurs and turns into hydroxyapatite [6.7]. Transformation kinetics of 
amorphous calcium phosphate into hydroxyapatite, which can be described 
by a first order reaction law, is only a function of the solution pH at constant 
temperature [8.9]. Solution transformation depends on the conditions that 
regulate both amorphous calcium phosphate dissolution and formation of the 
first nuclei of hydroxyapatite [10]. In a recent study [11,12], the experimental 
results concerning the influence of pH and temperature on the transformation 
of amorphous calcium phosphate into hydroxyapatite have been presented. 
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From the kinetic data, the values of the rate constant and activation 
energy at pH 8.5, 9.1, 9.7, 10.2, 11.3, 12 were calculated. Based on the values 
obtained for activation energy, it has been established that the transformation 
of amorphous calcium phosphate into hydroxyapatite can be described by a 
combined macrokinetic mechanism: transfer-mass conversion. The mathematical 
model of the process was established and the constant values from the 
mathematical model equation were determined [11.12]. Simulations were 
made based on the proposed model and the results show a good agreement 
with the experimental data values, which confirms the validity of the model. 
Starting from these results, in the present work a method that can be used 
to determine quickly and easily the values for degree of conversion (η ) in 
different experimental conditions is presented. A comparison between the 
numerical results and analytical results indicates that predictions obtained with 
the new technique are closer to the analytical solutions. 
 
RESULTS AND DISCUSSION 

The interpolation of experimental data in order to obtain spline 
interpolation function was performed with Mathcad 15. The experimental 
data presented in a previous communication [11.12] were used in the present 
study. Thus, for two temperatures CT 00

1 20=  and CT 00
2 50= , the spline )(tS  

was determined, which is a function of one variable and approximates 
function η  experimentally determined. Figures 1 and 2 show the spline function 
at various pH values: 
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Figure 1. Graphic representation of the degree of transformation of amorphous 

phase in hydroxyapatite using spline function at 20 0C and 6 pH values.  
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Figure 2. Graphic representation of the degree of transformation of amorphous 

phase in hydroxyapatite using spline function at 50 0C and 6 pH values 
 
The analysis of the graphs obtained show that the interpolation spline 

nodes ( )1,Tt  have no large variations between nodes, so they model correctly 
the process of phase transformation. 

Because function η  varies with respect to time and pH, the interpolation 
of the function of two variables ( )pHt,η  on domain containing ( )pHt,  
experimentally determined at a fixed temperature T = 20 0C was made. The 
result is shown in Figure 3: 

 
Figure 3. Function F (interpolation spline) 

 
To determine the values of function η  at fixed time and pH, the surface 

is divided with a plan that corresponds to ordinate pH point selected. The 
section curve of the plan with the spline surface ),( pHtF  is the same with the 
one obtained for one variable function η  (in plan) at that temperature and pH. 
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So, the 3D cubic spline interpolation of function ),( pHtη  enables 
the determination of approximate values for function η  for any other value 
from time and pH interpolation range at fixed temperature T. 
 
CONCLUSIONS 

In this paper we showed the possibility of using numerical methods in 
the technology of hydroxyapatite preparation. Compared with the mathematical 
model obtained in previously published works, this method is much simpler 
and allows the rapid determination of the degree of conversion values η , 
which in mathematical modeling of the process have a great importance. The 
advantage of mathematical formulation of the process is the reduction of the 
number of experiments, providing the ability to determine the values of function 
η  at any time and in the pH range of interpolation.  

Elaboration of experimental data obtained through spline functions is a 
new issue to the modeling domain when using the "black box" method. 
Polynomial spline interpolation method allows a rapid determination of 
conversion at any time and pH in the range of interpolation. It is necessary to 
continue the research in this field in order to determine the coefficients in 
polynomial equation of the spline functions. Therefore, using these functions in 
solving engineering problems, automation, management and optimization of 
processes would be more effective.  
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IMPLICATIONS OF SENSE/ANTISENSE  
NUCLEIC-ACID CODONS ON AMINO-ACID COUNTS 

 
 

VLADIMIR R. ROSENFELD∗, DOUGLAS J. KLEIN∗ 
 
 

ABSTRACT. We study the amino-acid content of protein sequence factors 
translated from codonic palindromes of nucleotide sequences, which have 
each half comprised from an integer number of codons. Alternatively, our 
study may be viewed to seek consequences if sense & antisense translations 
for proteins originate with the two (complementary) strands of RNA. 

Under either of these presuppositions, we conclude: the total number 
of aspartic-acid, asparagine, tyrosine, and histidine residues produced equals 
the total number of isoleucine, methionine, and valine residues produced. 
Further, we find a suite of inequalities on amino acid counts. Our results provide 
a rigorous consequence to a relation considered by Zull et al. Further, a “parity 
rule” of Chargaff et al. gives some support for a sense/antisense presumption. 
 
Keywords: nucleotide sequence, codonic palindrome, translation, parity rule, 
complementation  

 
 
 
INTRODUCTION  
 Nucleotide sequences of DNA (desoxyribonucleic acid) and RNA 
(ribonucleic acid) are constructed from four types of nucleotides denoted by 
characters A, C, G, and either T (for DNA) or U (for RNA). DNA consists of 
two complementary strands, with these four characters matched into two 
complementary pairs: A & T and C & G.   
 Here, we investigate the consequences of protein translation from both 
sense & antisense directions along nucleotide sequences. This might [1, 2], 
sometimes, arise from oppositely oriented translation along strands from 
complementary DNA strands. Or it can arise from a single RNA strand which 
is a “codonic” palindrome. It is natural to interrelate amino acids as to whether 
they have inverted nucleotide codons, and, indeed, such has already been done 
by Zull & coworkers [3, 4]. From this interrelation (conveniently expressible 
as a “graph”, of vertices representing amino acids, and edges representing the 
relation), consequences then are sought. Zull & Smith [3] questioned whether 
3 portions of this graph correspond to 3 classes of amino acids manifesting 
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different secondary protein structure (α-helix, β-sheet, or random). This could 
only be a statistical correlation, as many amino acids occur in 2 or 3 types of 
secondary protein structures (though with different frequencies), and, indeed, 
Zull & Smith found only a (very) weak correlation. We developed a different 
type of consequence which however is rigorous, under either the condition 
of sense/antisense translation of complementary RNA strands or translation 
from a “codonic” palindrome. We found equal net weights for the frequencies of 
occurrence of amino acids in two subclasses comprising one of the (bipartite) 
fragments of the codon inversion graph. Either Chargaff’s proposal [5] of forward 
(sense) & reverse (antisense) translations nucleic acid sequences or Zull’s 
idea of codonic palindromes leads to a general sense/antisense reading of 
individual codons.  
 Given a nucleotide sequence, a later disjoint sequence is termed an 
inverted repeat if it consists of the complements of the first sequence in reverse 
order. The initial sequence and the later inverse repeat are together termed ([6], 
p. 76) a complementary palindrome – elsewhere often termed simply a 
“palindrome”. Sometimes, the direct sequence and its inverted repeat both 
consist of an integer number of codons. Such a pair of palindromic sequences 
(or subsequences) consisting exactly of an integer number of codons is 
called a codonic palindrome. We represent the situation when there are s 
codons in each of RNA sequence by  
 
 

                       a1a2· · ·a3s-1a3s · a3s*a3s-1*· · ·a2*a1*,                             (1) 
 
 

where ai & ai* are two complementary nucleotides (say, C & G) of the nucleotide 
alphabet A  = {A, C, G, U}.  Note: the “codonic” condition on this (complementary) 
palindrome means the direct & inverted sequences each comprise an integer 
number of codons. 
 A more general notion allows “concatenation” of different codonic 
fragments of a codonic palindrome. The codons of a codoinic palindrome 
may be moved around to be placed in different positions, still preserving all 
codons, just in a different order.  We term such a reassemblage a codonic 
palindromic conglomerate. 
 This allows consecutive codonic-palindromic loops (such as occur 
with introns), and this also accounts for nested loops (i. e., loops of smaller size 
inserted into contour sequences of loops of larger size), it allows even multiply 
nested loops. We may imagine: at the first hypothetic stage, starting from a 
single giant codonic palindrome, with direct sequence t and inverted repeat 
u, each of which are to be broken up into codon subsequences, say as  
(t1, t2, . . . , tm) and (us, us-1, . . . , u1), with possibly different numbers of different-
lengthed subsequences ti & uj from t & u; and at the second step, putting these 
different subsequences back together in an arbitrary order. The superpalindrome 
need not be biologically realized but rather just the intermixed codonic 
palindromic conglomerates. 
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 Granted these ideas, we develop some formalism in the next section, 
so as to identify notable consequences on the numbers of amino acids 
formed within different selected groups, under the assumption that the RNA 
is a codonic palindromic conglomerate.  Most of the formal discussion is not 
needed to understand the final biological consequences, which come in 
Propositions 4, 5, & 6.   
 
FORMAL RESULTS 

To manipulate nucleotide sequences, one may use three commuting 
operators: α standing for complementation (as indicated by (*) in (1)) of 
nucleotides in a string; β for inversion of the string, and the composition  
γ = αβ = βα. We can formally rewrite (1) using γ: 
 

                         a1a2· · ·a3s-1a3s · γ(a1a2· · ·a3s-1a3s).                              (2) 
 

 Let B  = {b1, b2, . . . , b21} be the set of 21 amino acids (where the 
21st amino acid terminologically corresponds to the triple of stop codons). 
For a nonempty subset S ⊆ B  of amino acids, denote by C(S) the set of all 
codons for the amino acids from S. And let γC(S)  denote the result of action of 
the operator γ on each codon in C(S). 
 We investigate the consequences of a pair of subsets S1 and S2 of 
amino acids, for which γC(S1) = C(S2), or equivalently γC(S2) = C(S1), since 
γ is idempotent (i. e., γ2 = 1), as also are α and β.  
 

Lemma 1. Let T1 & T2 be two sets of amino acids such that C(T1) = γC(T2). 
Let a =a1a2· · ·a3s-1a3s · a3s*a3s-1*· · ·a2*a1*  (ai, ai* ∈ A ; 1 ≤ i ≤ 3s ≥ 3) be a 
codonic palindrome. Moreover, let lj (res. rj) (j = 1, 2) be the total number of 
occurrences of codons belonging to C(Tj) in  

a1a2· · ·a3s-1a3s (res. a3s*a3s-1*· · ·a2*a1*). Then l1 = r2 & r1 = l2. 
 

Proof. Since a = tγ(t), with t = a1a2· · ·a3s-1a3s & γ(t) = a3s*a3s-1*· · ·a2*a1* , the 
numbers of “direct” and inverted codons in a are equal. Also, by 
construction, C(T1) and C(T2) are sets of mutually inverted codons, whence 
we immediately arrive at the proof. 
 Note: for any codon t representing a respective amino acid bi, the 
corresponding codon u = γ(t) always represents a distinct amino acid bj. 
Therefore, γ induces a binary relation on the set B  of  all amino acids which 
can be represented thereon by a simple graph Γ, where amino acids bi & bj 
are adjacent (linked by an edge) if there exist a codon t of the former and a 
codon u of the latter which are interchanged by γ (u = γ(t) & t = γ(u)). Important 
here are the connected components (maximal connected subgraphs of Γ). 
We immediately use these considerations in the following  
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Lemma 2. Let T1 &T2 be two sets of amino acids with C(T1) = γC(T2). Then, for 
any U1 ⊆  T1 corresponding to a connected component of  Γ, either U1 is entirely 
in T2 or else entirely external to T2 (i. e., either U1 ∩ T2 = U1 or U1 ∩ T2 = ∅). 
 

Proof. Associate to the union Tu = T1 ∪ T2 a graph H whose vertex set is 
Tu, and two vertices i & j are adjacent in H if there exist codons ti & tj such 
that ti = γ(tj). Now, attach exactly one self-loop to every vertex of H to obtain 
a derivative graph Ĥ having the same connectivity components. Clearly, Ĥ 
is an equivalence relation on Tu where any pair of vertices i and j are equivalent 
iff these belong to one connected component. Indeed, three conditions are 
satisfied: (i) reflexivity, as guaranteed by ‘self-connectivity’ of every vertex having 
an attached self-loop; (ii) symmetry, since ti= γ(tj) ⇔ tj  = γ(ti); and (iii) transitivity, 
as follows from the connectivity within a component. Evidently, in our hypothesis, 
U1 is a single equivalence class of vertices of Tu, while T2 is the union of a 
number of equivalence classes of vertices thereof. Since two equivalence 
classes of objects either coincide or share no element, U1 is either included 
as one such class in T2 or intersects with no equivalence class of vertices 
comprising T2. This completes the proof. 
 

Corollary 2.1. Let T1 &T2 be two sets with T1 ≠ T2  and C(T1) = γC(T2). 
Then, if T1 & T2 are minimal, they are disjoint. 
 

Proof. This uses reasoning similar to Lemma 2. Namely, minimal sets T1 
and T2 are both equivalence classes of Tu = T1 ∪ T2. Since T1 ≠ T2, we 
immediately arrive at the proof. 
 

Corollary 2.2. Let a = a1a2· · ·a3s-1a3s · a3s*a3s-1*· · ·a2*a1* (ai, ai* ∈A ; 1 ≤ i ≤ 3s ≥ 3) 
be a codonic palindrome. Moreover, let nj  ( j = 1, 2) be the total number  
of occurrences of codons belonging to C(Tj) in  a= a1a2· · ·a3s-1a3s (res. 
a*=a3s*a3s-1*· · ·a2*a1*). Then n1 = n2. 
 

Proof. Note that nj = lj + rj  ( j = 1, 2). By virtue of the equalities l1 = r2  and  
r1 = l2 demonstrated in Lemma 1, the proof is immediate. 
 

Proposition 3. In a codonic palindromic conglomerate, there are equal amounts 
n1 and n2  of amino acids from respective minimal subsets T1 and T2, as in 
Corollary 2.1. 
 

Proof. The initial codonic superpalindrome has n1=n2, by Corollary 2.2. But 
breaking up into codons and rearranging all the various codons does not 
change the numbers of the different codons, so that one still has n1 = n2. 
 Next, we frame these results more biologically.  
 

AMINO-ACID COUNTS 
 The relation γ which acts on a nucleic acid string to reverse & complement 
it leads to a relation between amino acids: if an amino acid has codon 
u=a1a2a3, then, it is related or linked to the amino acid with γ(u)=u3*u2*u1*. 
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This overall γ-relation is conveniently represented as a graph Γ where an edge 
occurs between the amino acids of codons u & γ(u). Using the standard codons 
(e. g., as in Ch. 13 of [7]), the graph Γ appears in Fig. 1 – also given by Zull et al. 
[4]. But now (following the results of our preceeding section) we seek a minimal 
pair of subsets S1 & S2 of amino acids for which γC(S1) = C(S2), and γC(S2) = 
C(S1), since γ2 = 1. It turns out that in Γ there is a pair of such sets: S1 = {D, N, T, 
H} & S2 = {I, M, V}, where D, N, T, H, I, M, V denote aspartic acid, asparagine, 
tyrosine, histidine, isoleucine, methionine, and valine, consecutively. One sees 
that our sets S1 & S2 are mutually interconnected while being completely 
disconnected from the remaining vertices. The corresponding codon sets are 
C(S1) = {GAU, GAC; AAU, AAC; UAU, UAC; CAU, CAC} and C(S2) = {AUU, 
AUC, AUA; AUG; GUU, GUC, GUA, GUG}. Application of the operator γ to 
C(S1) gives γC(S1) = {AUC, GUC, AUU, GUU, AUA, GUA, AUG, GUG}, which 
is just C(S2). Hence, also γC(S2) = C(S1). This is the only pair of minimal 
distinct sets S1 & S2 of amino acids having the described property in Γ (to 
transform quantitatively into each other under the operator γ). The remnant 
set S3  = B \ S1 ∪ S2  of amino acids gives a minimal set C(S3) of codons closed 
under the action of γ. 
 

Asp
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His Met

Ile
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Trp

Lys

Gln
Leu Pro

Gly
Ser

Thr

Cys

Ala
Phe

Glu

Ter

Arg

 
Figure 1: The graph Γ of γ-relations of amino acids; the left bipartite component 
displays the sets S1 (the 4-site part: Hys, Tyr, Asn, Asp) and S2 (the 3-site part: 

Met, Val, Ile), while the right component displays the set S3 . 
 

A codonic palindromic conglomerate merely conditions codons to 
occur in complementary pairs. Thence, allowing several codonic palindromes 
nested, or multiply nested, or interlinked in all kinds of ways. Instances of such 
objects can occur in introns. Recall that the mRNA of eukaryotes is obtained 
through splicing from pre-mRNA (precursor mRNA), which is similar to a portion 
of a strand of DNA. During splicing, relatively long factors called introns are 
removed from a pre-mRNA sequence. Most introns are 80 to 400 base pairs in 
size; though there also exist huge introns of length >10,000. While introns do not 
themselves participate in producing amino acids, it is of note that the intronic 
loops even of a very high degree are covered in the conditions of Proposition 3, 
where n1 = n2 is achieved. More explicitly for (T1 &T2  of Proposition 3 realized as) 
S1 & S2  in Fig. 1, with #X being the number of amino acid moieties X produced, 
we arrive at a primary biological result: 
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Proposition 4. In protein factors translated from codonic palindromic 
conglomerates, such as occur with various stem loops, numbers of amino-
acid residues are related 

#Asp + #Asn + #Tyr + #His = #Ile + #Met + #Val. 
 But, granted our codonic palindromic conglomerates, there are further 
(weaker) consequences, concerning inequalities on amino acid numbers. In 
particular, we have: 
 

Proposition 5. In protein factors translated from codonic palindromic 
conglomerates, there are inequalities on the numbers of different amino acids: 
 

                                             #Met ≤ #His; 
                                             #His ≤ #Met + #Val; 
                                              #Ile ≤ #Tyr + #Asn + #Asp; 
                         #Tyr + #Asn + #Asp ≤ #Ile + #Val; 
                                             #Gln ≤ #Leu; 
                                             #Trp ≤ #Pro; 
                                             #Ter ≤ #Leu + #Ser; 
                                             #Pro ≤ #Trp + #Arg + #Gly; 
                                             #Ser ≤ #Ter + #Arg + #Gly + #Ala + #Thr 
                                            #Cys ≤ #Ala + #Thr; 
                                    #Ala + #Thr ≤ #S er + #Arg + #Gly + #Cys; 
                                  #Leu + #Phe ≤ #Gln + #Lys + #Glu + #Ter; 
                         #Gln + #Lys + #Glu ≤ #Phe + #Leu; 
                #Gln + #Lys + #Ter + #Glu ≤ #Leu + #Phe + #Ser; 
                #Trp + #Arg + #Gly + #Cys ≤ #Pro + #S er + #Ala + #Thr; 
                #Pro + #Ser + #Cys ≤ #Trp + #Ter + #Arg +  #Gln + #Ala + #Thr; 
 

where the number #Ter of “stops” is conveniently identified to the number 
of different proteins. 
 

Proof. Our proof begins with a transformation of G of Fig. 1 into a symmetric 
digraph Γ where each edge of G is converted into a pair of opposite directed 
arcs between the same two vertices (as originally connected by the replaced 
edge). We attach to every arc i j of Γ a weight aij equal to the total multiplicity of 
all codons representing amino acid i which are transformed by the operator γ 
into codons of amino acid j. Next, we use a (common mathematical) definition 
that a subset I of vertices of G is independent if no two vertices of I are 
adjacent in G. Any independent subset I of amino acids (nontransformable one 
into another by γ) determines the set J = N(I) of all amino acids adjacent to 
members of I. Evidently, the operator γ transforms all codons of amino acids from 
I into codons representing amino acids from J, but the converse is true if no two 
amino acids of J are adjacent in Γ (or Fig. 1). In general, there holds a (nonstrict) 
inequality interrelating the total numbers of codons of I transformed into 
codons of J and of codons of J itself, taking into account other possible 
transformations of codons of N(I) – not into codons of I. Thus, we deduce 
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for the total numbers of codons in I and J that |C(I)| ≤ |C(J)|. Hence, particular 
proofs for all cases considered in Proposition 3 follow, with different choices 
of independent I & neighbors J = N(I) corresponding to the left & right sets 
of amino acids in each of these inequalities. 
 Presumably, these statements are most important when at least most of 
the RNA (or DNA) is comprised from codonic palindromic conglomerations. 
But, perhaps, most significantly Propositions 4 and 5 hold under the sense/ 
antisense circumstance proposal in [1] & [2], [5] and explored in [3] & [4]. That is: 
 

Proposition 6. If in place of the condition of codonic palindromic conglomerates 
in Propositions 4 & 5, the protein factors are translated from RNA, obtained from 
both (sense & antisense) DNA strands, then the conclusions 4 & 5 still hold. 
 

Proof. The two corresponding RNA strands may be viewed as a single codonic 
palindrome, say each of the strands being separated from one another by a 
hypothetical “stop” codon. Thence, Propositions 4 & 5 apply. 
 
DISCUSSION 
 Comparison of proportions of amino acids as indicated by Propositions 
4 & 5 are perhaps of practical interest. Clearly, 4 & 5 are most relevant 
when all or at least a major part of the RNA (or DNA) is comprised from codonic 
palindromes – in as much as the various indicated amino acids may be coded 
for in different amounts by the portion of the nucleotide chain outside the 
codonic palindromes. Chargaff & coworkers’ “parity rule” [5, 8–10] is in 
general a little weaker than the hypothesis of 4 & 5, but still is supportive of 
it, for some selected species. Most significantly, our results on amino-acid 
counts apply fully if the sense/antisense hypothesis of [1, 2] is met. As such, our 
Proposition 6 offers a strong test of the occurrence of sense/antisense 
translations – such as we imagine though not a general occurrence, could 
be the situation for selected species. 
 Further, note that a “parity rule” of Chargaff and coworkers [5] suggests 
that, in a wide class of single strands of DNA, the numbers of A&T nucleotides 
match as also do the numbers of C&G nucleotides. (This seems to occur [8] 
especially for eubacterial and chloroplast DNA.) That is, granted the satisfaction 
of this Chargaff’s rule, single DNA strands have met (in our formal nomenclature) 
a first condition for the whole DNA molecule to be a codonic palindromic 
conglomerate. A strengthening of this rule to say that complementary nucleotides 
fully “condense” into complementary  
codons would then imply our result for a single strand of DNA. 
 Again, our ideas are related to Zull and coworkers [3, 4], though 
they look at the possibility of the graphic structure of Fig. 1 to be statistically 
manifested in secondary protein structures, whereas what we focus on is 
what might be termed “0-ary” structure (of amino acid counts). A further 
point is that our results (of Propositions 4, 5, 6) are robust to certain rare 
complications involving the rare alternative translation of a “stop” to some 
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other rare amino acid – and this may be seen not to hurt any of the inequalities 
in 5. For instance, the “stop” codon UGA can in certain mitochondria code 
for tryptophan and for selenocystein in certain Archaea. Also, this occurs 
because [12] the second stop codon UAG can code for pyrrolysine in 
Archaea and bacteria. 

Besides, the (standard) mode of forming RNA loops, another hypothetic 
possibility might be imagined to form “reverse loops” (i. e., helixlike loops) 
interconnecting between a directed sequence and a second sequence of 
nucleotides which, though complemented from the first sequence, is not 
reversed in direction along the strand. If such is imagined: namely, to occur 
(as has indeed been entertained as a possibility by Chargaff et al. [10]), one 
could then inquire about the numbers of different amino acids which arise from 
two so-related sequences. That is, one would inquire about the interrelated 
amino acids, considering our complementation operator α as interrelating the 
two nucleotide sequences – conglomerated or not. Then, the same sort of 
results found in our formal section apply, with γ replaced by α, now with 
reference to the α-graph of Fig. 2. 
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Tyr
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Gln
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Figure 2: The graph of α-relations of amino acids. 

 
 With many bipartite components in this graph, this would evidently 
lead to a multiplicity of interrelations amongst numbers of various amino 
acids. For instance, this would imply that the amounts of glycine & and 
proline are the same (and also the amounts of lysine & phenylalanine) – 
seemingly, these equalities (and more) do not occur, so that the pairing 
between a direct sequence and a second sequence in a strand in the same 
direction, evidently, does not occur. The apparent reason must be that, e. g., 
the pairing between C & G occurs only when the two nucleotides in making 
contact are oppositely oriented along a nucleotide chain, whence we might 

in fact distinguish the possibilities by 
→
C &

→
G  for nucleotides oriented in one 

“symparallel” direction along the chain, and 
←
C &

←
G in the other direction 

along the chain – so that pairing occurs between antiparallel [10] 
→
C &

←
G  (or 
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between 
→
G &

←
C ), but not between “symparallel” 

→
C &

→
G   (or 

←
C &

←
G ). A 

similar comment applies for A & U (or T). That is, the conformational structure 
of each nucleotide is evidently different along the two different directions of 
a chain. Overall this evidently accounts for the fact that nucleotide sequences 
always form copies in antiparallel directions, rather than symparallel directions 
(with complementation). This, seemingly, is an evolutionarily selected (or) 
condition for faithful transcription. 
 
CONCLUSION 
 Beyond the presumption of sense/antisense reading of codons, our 
exposition here arises from just very basic facts of molecular genetics. Under 
such (sense/antisense) conditions, we have found novel biological consequences 
enounced in Propositions 4, 5, and 6. Being rigorous consequences of these 
conditions, the amino-acid count relations may be used as tests for either 
Chargaff’s sense/antisense hypothesis (in RNA) or for our codonic palindromic 
conglomerate condition (whence, then, Zull’s hypothesis). That is, if our amino-
acid conditions are not met, then this denies both Chargaff’s and Zull’s 
hypotheses. Finally, we may mention two other recent works [13, 14] which 
consider similar biological matters in a wider algebraic context. 
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ABSTRACT. A shift of the frame in a polynucleotide sequence typically 
alters the codon content of the sequence. This provokes a question as to 
what sequence might be unaltered after shifting the frame. In fact, a linear 
sequence cannot exactly be so conserved – but there might be a possibility 
if it is a cyclic code subjected to a circular permutation, as we consider here. 
The solution is strikingly simple: A cyclic sequence of different nucleotides 
conserves a circular order of its codons under any shift of its frame if it has a 
length λ not divisible by 3 and is consecutively read κ times, or it is composed 
of κ repeated copies of a factor h of length λ, where κ is divisible by 3, while λ 
is not. For example, the sequence atcgatcgatcg has a factor atcg of length 
λ = 4 is repeated κ = 3 times. Translating this code without any shift gives 
isoleucine, aspartic acid, arginine, and serine, consecutively, or IDRS for short. 
The circular shift by 1 position results in SIDR, by 2 positions if produces RSID, 
and (here) at last, the circular shift by 3 positions gives DRSI. Apparently, all 
four translated codes of amino acids are the same relative to cyclic permutation. 
We conclude here discussing the cyclically invariant codes by noting that 
these can easily be enumerated using the famous Pólya’s theorem. 

 
Keywords: nucleotide sequence, codonic, frame shift, cyclically invariant, 
permutable  

 
 
 
INTRODUCTION  
 Nucleotide sequences of DNA (desoxyribonucleic acid) and RNA 
(ribonucleic acid) are constructed from four types of nucleotides denoted by 
the characters A, C, G, and either T or U, where options T or U are used in 
cases of DNA or RNA, respectively. According to the complementarity of two 
strands in DNA, these four characters comprise two complementary pairs: 
A & T (or U) and C & G. See, e. g., Ch. 13 in [1]. 
 A cyclic shift of the frame in an RNA polynucleotide sequence, in 
general, alters the resulted sequenced codon content, by which we mean 
the net number of codons of each different type. This provokes questions 
as to whether there are codes unaltered after shifting the frame, and, if so, 
then what codes. Typically, a linear sequence of codons cannot exactly be 
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so conserved – except possibly in certain circumstances. As announced in 
the title, cyclic sequences of nucleotides having this property do exist. 
Cutting such a cyclic sequence at an arbitrary position produces a linear 
factor f  which then might be read as a sequence of codons. But with an 
alternative cut, a shift of the frame by one or two nucleotide positions can 
under suitable circumstances give the same codon content (i. e., the same 
counts of acid type of codons -- and thence of each type of translated amino 
acid). Still one might imagine another scenario where a cyclic RNA is read 
without cutting, with the reading going round repeatedly – and this under 
different circumstances can again lead to codon conservation. That is, our 
considerations are connected with potential ways in which nature might 
create a kind of ‘selfcorrecting code’ for amino-acid content, or even codon 
sequences (up to cyclic permutation), such as to conserve the construction 
of proteins which are synthesized through translation of codons to amino 
acids. That is, regardless of the starting point, or reference frame choice for 
codon translation, the same result would be realized for a codonically invariant 
cyclic sequence. But also, instead of a cyclic RNA, one may also imagine a 
linear one having a similarly constructed, periodic factor whose frame shift 
produces the same circular shift of codons therein and thereby assures the 
same (apparently circular) order of a translated amino acid sequence. 
 
 
RESULTS AND DISCUSSION 

We begin with a selfevident statement: 

Lemma 0. A periodic cyclic sequence, of the length 3,≥  obtained by repetition 
of just one nucleotide conserves a fixed codonic content which does not 
alter under any shift of frame. 

Note that both of DNA and RNA normally contain (long) stretches of 
mononucleotide repeats; besides the conservation of codon content, they 
may play an important role in base composition and genetic stability of a 
gene and gene functions, etc.. However, it is not yet properly understood -- 
how nature keeps a fixed-frame reading of general-type codons to reproduce 
many times the same polypeptide molecules, in organisms. Here, we apply 
some combinatorial reasoning to comprehend certain details of this complex 
natural phenomenon. 
 The first result of this paper is the following statement: 
 

Lemma 1. Let f be a cyclic sequence of nucleotides with a length | f | not 
divisible by 3  and with not all nucleotides being the same. Then, there is 
conservation of a circular order of codons under any shift of frame if f  is 
consecutively read κ  times, where κ  is divisible by 3.  
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Proof: First, we address the case where the length of nucleotide sequence 
is not a multiple of 3,  say 3 1,k ±  with k  being a positive integer. First, choose 
a cyclic sequence f of length | | 3 1.f k= +  Starting from an arbitrary fixed point 
of the cycle, we can traverse 3k  characters, or k  complete codons, and 
have yet in reserve one spare nucleotide. Continuing cyclically, we utilize 
this remnant nucleotide as the first. Whence, codons in the second portion 
of k  codons are all passed with the shift of nucleotides by one position to 
the left, with respect to the distribution into codons in the first 3k -nucleotide 
string. Now, we have two remnant nucleotides, from the right “end” of which 
now constitute the first two nucleotides of the next codon. Making a third tour 
now of k  more codons along the same sequence of nucleotides produces a 
sequence of codons which stops at the same point where it was originally 
begun. That is, we have overall traversed a sequence of 3 1k +  complete 
codons where all the three possible shifts of the frame have been realized – 
meaning that the shifts have been made in a circular direction. Apparently, 
much the same holds true for a factor of length 3 1.k −  This completes the 
proof. 
 The next statement is related to the preceding one: 
 

Lemma 2. Let f be a cyclic nucleotide sequence obtained by the κ -fold 
repetition of a factor h  of a length | |h , let the nucleotides not all be the same, 
and let the whole sequence be read just once. Then, there is conservation 
of a circular order of codons under any shift of frame if κ  is a multiple of 3, 
while | |h  is not. 
 

Proof: First, take a sequence f  which is the κ -fold repetition of a factor h  
of a length | |h  not divisible by 3  and with κ  being a multiple of three, as in 
conditions of Lemma 1. Since the tour around such a κ -fold cycle is tantamount 
to the κ -fold rotation along a cycle of length h  (obtained by cyclically closing a 
factor ),h  the application of Lemma 1 gives here the proof of the statement. 
 It is convenient to merge both lemmas to state the following: 
 

Proposition 3. Let f be cyclic sequence of nucleotides. Then, f conserves 
a circular order of its codons under any shift of its frame if (0) all the nucleotides 
are the same, (1) f has a length λ  not divisible by 3  and is consecutively read 
κ  times, with κ  a multiple of 3, or (2) f is composed of κ  repeated copies of a 
factor h  of length ,λ  where κ  is divisible by 3, while λ  is not. 
 As a case in point, consider the sequence atcgatcgatcg; here, the 
factor atcg of length 4λ =  is repeated three times. Translating this code without 
any shift gives isoleucine, aspartic acid, arginine, and serine, consecutively, or 
IDRS for short. The circular shift by 1 position results in SIDR, by 2  positions 
produces RSID, and (here) at last, the circular shift by 3  positions gives DRSI. 
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Apparently, all the four translated codes of amino acids are the same relative 
to some circular permutation. Besides codon conservation, the circumstances 
of Proposition 3 lead to a further consequence: 
 

Proposition 4. Let f be a cyclic sequence of different nucleotides satisfying 
one of the conditions of Proposition 3. Then, the cyclic sequence q  of amino 
acids so translated from f is conserved under any cyclic shift of f  (with q  
defined only relative to circular order). 
 The Propositions 3 and 4 allow to conclude that a minimal linear factor 
g  of a nucleotide sequence which guarantees to produce, upon translation, the 
respective factor of the amino acid ‘with accuracy to a circular permutation’ takes 
the form ,g acccb=  where c is a factor of length | |c λ=  not divisible by 3;  and 
prefix a  & suffix b  factors of a total length | | | | 2a b+ =  (0 ; 2)a b= =  
correspond to the last and first, consecutive nucleotides of c, respectively. The 
adjective “minimal” stands here to allow circular shifts by 1 or 2  positions. If a  
(res. )b  is a longer factor of c  and | | | | ,a b λ+ ≥  then g  allows a (not minimal) 
number | | | |a b+  of circular permutations of the translated factor .g  
Accordingly, one or two ‘sparse’ nucleotides form codons with 2  or 1 external 
nucleotides, respectively. Codonic nucleotides of the factor g  encode a 
(periodic) factor of the respective amino acid sequence containing a not 
necessary integer number of repeated translates of .ccc  Combinatorially, just 
this controls producing circular permutations in a protein domain. 
 One might also consider the enumeration of the types of sequences 
of our Lemma 2, say, with the enumeration at fixed κ  & .λ  That is, we 
seek the number of equivalence classes of cyclic sequences, where two 
such sequences are equivalent if one can be obtained from the other via a 
cyclic permutation (i. e., a power of the permutation which cycles the 
members one unit along the sequence, with the last member permuted to 
the first). We let ,#κ λ  be the number of such equivalence classes consisting 
of κ  segments each of length ,λ  with κ  divisible by 3  and λ  not. Then: 
 

Proposition 5. Let ,#κ λ  be the number of equivalence classes of cyclic 

(nucleotide) sequences having κ  segments of length .λ  Then, , 1,# # .κ λ λ=    
Proof: Each circular shift of an arbitrary ( , )κ λ -sequence by one position is 
equivalent to asynchronous circular shift of every factor of length λ . Such a 
factor, if considered in a cyclic fashion, represents a (1, )λ -sequence, so that 
the number of distinct circular arrangements of nucleotides in both (fixed) 
( , )κ λ - and (1, )λ -sequences is the same. Since this is true for any ( , )κ λ -
sequence separately, it holds true for the entire set S  of all circularly 
nonequivalent ( , )κ λ -sequences with the set F  of their representative λ -
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factors (which are all distinct). With this one-to-one correspondence 
between the two sets, the proof is completed. 
 But now we note that 1,# λ  is solved by Pólya’s enumeration theory [2]. 
Indeed, a problem somewhat like this is a standard enumeration in many 
combinatorics texts: one ordinarily enumerates equivalence classes of 
beads on a necklace, with equivalence being determined by the 
dihedral group, rather than the cyclic group as here. The additional 
“reflective” permutations of the dihedral group are absent in our case, since 
our nucleotide “beads” have a direction (or orientation) along the sequence. 

But further, we might clarify a point concerning sequences of types 
( , )κ λ  and ( , )κ λ′ ′  with κ & κ′  each divisible by 3  while λ &λ′  not. In 
particular, it can turn out that some sequences can be of both types when 
there is a fixed total number of nucleotides , ,# # .Nκ λ κ λ′ ′= ≡  In particular, if N 

has a maximum power 1p >  of 3  as a divisor, then 3pN λ≡ ′′  with λ′′  not 
divisible by 3,  and sequences of type ( , )κ λ′′ ′′  (with 3 ,pκ′′ =  as both κ & κ′  
are divisible by ).κ′′  Indeed, all the sequences of a type ( , )κ λ  are again 
counted in those of type ( , )κ λ′ ′  if κ  is a divisor of κ′  Thus, we might introduce 
the count ,#κ λ  of cyclic sequences such that this includes no cyclic sequences 
of other types. By virtue of the Proposition 5, we can reduce this count to 
the enumeration of all cyclic (1, )λ -sequences that are a repetition of no 
block of length λ′  being a divisor of .λ  The calculation of ,# κ λ′  first includes 
determining the numbers 1,# λ′  for all distinct divisors λ′  of ;λ  and, then, 
the general inclusion-exclusion procedure applies [2]. Now, one can in fact 
obtain those counts in terms of the classical Möbius functions [2]. In 
particular, the number-theoretic Möbius function ( )nμ  is defined as follows: 

0 if is not square-free;
( ) :

( 1) if product of distinct primes.k

n
n

n k
μ

⎧
= ⎨ − =⎩

                (1) 

Using the inclusion-exclusion principle, we state the following: 
 

Proposition 6. Let ,# κ λ′ be the number of cyclic ( , )κ λ -sequences such 
that includes no cyclic sequences of other types. Then, 

                   , ( / ), 1,
| |

# ( / ) # ( / ) #d d d
d d

d dκ λ λκ
λ λ

μ λ μ λ′ = =∑ ∑                  (2) 

Where the d summation is over divisors of .λ  
 

Proof: The first equality in (2) follows from the general inclusion-exclusion 
principle applying the number-theoretic Möbius function ( ),nμ  as this given 
by (1). The second equality follows from the Proposition 5, which completes 
the overall proof. 
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 Preceding experimental observations [3–9] of the last 30 years have 
unequivocally demonstrated the existence of naturally occurring cyclic permutations 
of the amino acid sequence of a protein. Our present Propositions 3 and 4 
determine a sufficient combinatorial condition imposed on respective factors of a 
nucleotide sequence to guarantee the practical occurrence of this phenomenon. 
 Concluding, we also mention that in a wider context, which includes 
also an algebraic simulation of alternative splicing, two other cyclic invariances of 
nucleotide sequences were earlier considered by Propositions 1 and 2 in [10], 
which do not directly take into account the distribution of nucleotides into 
codons. Besides, in nature, there are cases of biologically tolerated shuffling of 
factors of a nucleotide sequence which conserves the inventory of translated 
amino acids, together with all multiplicities thereof [11]. In other words, there 
exist also noncircular permutations of a nucleotide sequence conserving 
the ratios of codonically encoded amino acids (and, maybe, the assortment 
of codons themselves, without equivalent replacements thereof), whereas a 
circular order in which they (would normally) follow may be altered. Here, 
“would” is also used to anticipate a possible perspective of gene engineering 
which might apply such a principle. Presumably, this may give a new impetus to 
further interdisciplinary studies of invariant permutable codes, including 
those which are not cyclically invariant. 
 
ACKNOWLEDGMENTS 

The authors acknowledge the support (via grant BD–0894) from the Welch 
Foundation of Houston, Texas. 
 

REFERENCES 
 

1. J.D.D. Watson, “Molecular Biology of the Gene”, 3rd ed., W.A. Benjamin Inc., 
New York, 1976. 

2. G.H. Hardy and E.M. Wright, An introduction to the Theory of Numbers, Oxford 
University Press, London, 1938; the 5th edition, 1979. 

3. B.A. Cunningham, J.J., Hemperley T.P. Hopp, G.M. Edelman, Proc. Natl. Acad. 
Sci. USA, 1976, 76, 3215. 

4. M. Hahn, K. Piotukh, R. Borriss, and U. Heinemann, Proc. Natl. Acad. Sci. USA, 
1994, 91 (22), 10417. 

5. Y. Lindqvist and G. Schneider, Curr. Opin. Struct. Biol., 1997, 7 (3), 422. 
6. J. Av, M. Hahn, K. Decanniere, K. Piotukh, R. Borriss, and U. Heinemann, 

Proteins, 1998, 30 (2), 155. 
7. S. Uliel, A. Fliess, A. Amir, and R. Unger, Bioinformatics, 1999, 15 (11), 930. 
8. S. Uliel, A. Fliess, and R. Unger, Protein Engineering, 2001, 14 (8), 533. 
9. J. Weiner 3rd, G. Thomas, and E. Bornberg-Baurer, Bioinformatics, 2005, 21 (7), 932. 
10. V.R. Rosenfeld, MATCH Commun. Math. Comput. Chem., 2006, 56 (2), 281. 
11. E.A. Nalefski and J.J. Falke, Protein Sci., 1996, 5, 2375. 



STUDIA UBB. CHEMIA, LV, 4, 2010 
 
 

COMPUTATION OF THE FIRST EDGE WIENER INDEX OF  
A COMPOSITION OF GRAPHS 

 
 

MAHDIEH AZARIa*, ALI IRANMANESHb, ABOLFAZL TEHRANIANa 

 
 

ABSTRACT The edge versions of Wiener index, based on distance between 
two edges in a connected graph G, were introduced by Iranmanesh et al. in 
2009. In this paper, we find the first edge Wiener index of the composition 
of graphs.  
 

 Keywords: Wiener index, finite graphs 
 
 
INTRODUCTION 

Within this paper, we consider only simple, undirected, connected 
and finite graphs. A simple graph is a graph, without any loops or multiple 
bonds. Denote by ))(),(( GEGVG =  a graph G  with the set of vertices/ 
atoms )(GV  and the set of edges/bonds )(GE . For a (molecular) graph G , 
the degree of a vertex u is the number of edges incident to u and denoted 
by )deg( Gu  and the distance between the vertices u  and v  of G , is denoted 

by ),( Gvud  and it is defined as the number of edges in a shortest path, 

connecting u  and v . In this paper, we denote by [ ]vu, , the edge connecting 
the vertices u , v  of G .  

A topological index is a real number related to the structural graph 
of a molecule. It dose not depend on the labeling or pictorial representation 
of a graph.  
 The ordinary (vertex) version of the Wiener index (or Wiener number) 
of G , is the sum of distances between all pairs of vertices of G , that is:  

∑
⊆

==
)(},{

),()()(
GVvu

v GvudGWGW . 

This index was introduced by the Chemist, Harold Wiener [1], within 
the study of relations between the structure of organic compounds and their 
properties. This index is the first and most important topological index in 
Chemistry. So many interesting works have been done on it, in both Chemistry 
and Mathematics [2-13].  
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 The Zagreb indices have been defined more than thirty years ago 
by Gutman and Trinajestic, [14].  
 

Definition 1. [14] The first Zagreb index of G  is defined as:  
∑
∈

=
)(

2
1 )deg()(

GVu
GuGM . 

The edge versions of Wiener index of G , which were based on the 
distance between all pairs of edges of G , were introduced by Iranmanesh et al. 
in 2009 [15]. We encourage the reader to consult [16-20], for computational 
techniques and mathematical properties of the edge Wiener indices. The 
first edge Wiener index of G , is defined as follows: 
 

Definition 2. [15] The first edge Wiener index of G , is denoted by )(
0

GWe . 
That is:  

∑
⊆

=
)(},{
0 ),()(

0
GEfe

e GfedGW , where 
⎪⎩

⎪
⎨
⎧

=

≠+
=

feif

feifGfed
Gfed

0

1),(
),( 1

0
 and 

)},(),,(),,(),,(min{),(1 GtvdGzvdGtudGzudGfed = , such that [ ]vue ,= , 

],[ tzf = . This index satisfies the relation ))(()(
0

GLWGW ve = , where )(GL is 
the line graph of G. 

In this paper, we want to find the first edge Wiener index of the 
composition of graphs. 

Recall definition of the composition of two graphs. 
 

Definition 3. Let ))(),(( 111 GEGVG =  and ))(),(( 222 GEGVG =  be two 
connected graphs. We denote the composition of 1G  and 2G  by ][ 21 GG , 
that is a graph with the vertex set )()(])[( 2121 GVGVGGV ×=  and two 
vertices ),( 21 uu  and ),( 21 vv  of ][ 21 GG  are adjacent if and only if: 

[ )(],[ 22211 GEvuandvu ∈= ] or )(],[ 111 GEvu ∈ . 
By definition of the composition, the distance between every pair of 

distinct vertices ),( 21 uuu =  and ),( 21 vvv =  of ][ 21 GG , is equal to 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

∈=

≠

=

22211

22211

11111

21

,2

)(],[,1

),(

)][,(

Ginutoadjacentnotisvvuif

GEvuvuif

vuifGvud

GGvud  

 

COMPUTATION OF THE FIRST EDGE WIENER INDEX OF THE COMPOSITION 
OF GRAPHS 
 

Let ))(),(( 111 GEGVG =  and ))(),(( 222 GEGVG =  be two graphs. 
Consider the sets 1E  and 2E  as follows: 
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)}(],[),(:])[()],(),,{[( 222112121211 GEvuGVuGGEvuuuE ∈∈∈=
 )}(,),(],[:])[()],(),,{[( 2221112121212 GVvuGEvuGGEvvuuE ∈∈∈=  
By definition of the composition, ])[( 2121 GGEEE =U  and obviously, 

φ=21 EE I , )()( 211 GEGVE =  and )()( 1
2

22 GEGVE = . 
Set: 

},,:])[(},{{ 121 EfefeGGEfeA ∈≠⊆=  
},,:])[(},{{ 221 EfefeGGEfeB ∈≠⊆=  

},:])[(},{{ 2121 EfEeGGEfeC ∈∈⊆=  
 It is easy to see that each pair of the above sets is disjoint and the 
union of them is the set of all two element subsets of ])[( 21 GGE . Also we have:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

)()(

22

211 GEGVE

A , 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

)()(

22

1
2

22 GEGVE

B , 

)()()()( 21
2

2121 GEGEGVGVEEC ==  
 

Consider four subsets 321 ,, AAA  and 4A  of the set A  as follows: 

),()],,(),,[()],,(),,[(:},{{ 11212121211 GVuzuuufvuuueAfeA ∈==∈=
                     )}(,, 2222 GVzvu ∈  

),()],,(),,[()],,(),,[(:},{{ 11212121212 GVutuzufvuuueAfeA ∈==∈=

          2 2 2 2 2 2 2

2 2 2

, , , ( ),

}

u v z t V G both z and t are adjacent neither

to u nor to v in G

∈
 

),()],,(),,[()],,(),,[(:},{{ 11212121213 GVutuzufvuuueAfeA ∈==∈=

           222222222 }},{)(,),(, AvuGVtzGVvu −−∈∈  
),(,)],,(),,[()],,(),,[(:},{{ 111212121214 GVvutvzvfvuuueAfeA ∈==∈=

            )}(,,,, 2222211 GVtzvuuv ∈≠  

It is clear that, every pair of the above sets is disjoint and U
4

1=

=
i

iAA . 

In the next Proposition, we characterize ])[,( 210 GGfed  for all Afe ∈},{ . 
 

Proposition 1. Let Afe ∈},{ . 



MAHDIEH AZARI, ALI IRANMANESH, ABOLFAZL TEHRANIAN 
 
 

 186 

(i) If 1},{ Afe ∈ , then 1])[,( 210 =GGfed  

(ii) If 2},{ Afe ∈ , then 3])[,( 210 =GGfed  

(iii) If 3},{ Afe ∈ , then 2])[,( 210 =GGfed  

(iv) If 4},{ Afe ∈ , then ),(1])[,( 111210 GvudGGfed += ,  

where )],(),,[()],,(),,[( 21212121 tvzvfvuuue ==  
 

Proof. (i) Let 1},{ Afe ∈  and )],(),,[()],,(),,[( 21212121 zuuufvuuue == .  
Due to distance between two vertices in ][ 21 GG  and by definition of ),(0 fed , we 
have: 

),][),(),,((),][),(),,((min{1)][,( 212121212121210 GGzuuudGGuuuudGGfed +=
 

101)},(,1,1,0min{1)}][),(),,((),][),(),,(( 222212121212121 =+=+= GzvdGGzuvudGGuuvud

(ii) Let 2},{ Afe ∈  and )],(),,[()],,(),,[( 21212121 tuzufvuuue == . 
By definition of the set 2A , 2z  is adjacent neither to 2u  nor to 2v  in 2G  and this 
is also true for 2t . Therefore, 

),][),(),,((),][),(),,((min{1)][,( 212121212121210 GGtuuudGGzuuudGGfed +=

.3}2,2,2,2min{1)}][),(),,((),][),(),,(( 212121212121 =+=GGtuvudGGzuvud
 

 (iii) Let 3},{ Afe ∈  and )],(),,[()],,(),,[( 21212121 tuzufvuuue == . By 
definition of the set 3A , },{},,{ 222222 vutvuz ∉∉ .  
On the other hand 2},{ Afe ∉ , so at least one of the following situations occurs: 

)(],[),(],[),(],[ 222222222 GEzvGEtuGEzu ∈∈∈  or 
)(],[ 222 GEtv ∈ . 

This means that, at least one of the distances ),][),(),,(( 212121 GGzuuud  

),][),(),,(( 212121 GGtuuud  )][),(),,(( 212121 GGzuvud  or 

)][),(),,(( 212121 GGtuvud  is equal to 1. Therefore, 

),][),(),,((),][),(),,((min{1)][,( 212121212121210 GGtuuudGGzuuudGGfed +=

211)}][),(),,((),][),(),,(( 212121212121 =+=GGtuvudGGzuvud . 
 (iv) Let 4},{ Afe ∈  and )],(),,[()],,(),,[( 21212121 tvzvfvuuue == . 
Thus 11 uv ≠  and  

),][),(),,((),][),(),,((min{1)][,( 212121212121210 GGtvuudGGzvuudGGfed +=

=)}][),(),,((),][),(),,(( 212121212121 GGtvvudGGzvvud  
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),(1)},(),,(),,(),,(min{1 111111111111111 GvudGvudGvudGvudGvud +=+ ,  
so the proof is completed  

In follow, we define five subsets 4321 ,,, BBBB  and 5B  of the set B . 

),(,)],,(),,[()],,(),,[(:},{{ 111212121211 GVvuzvuufvvuueBfeB ∈==∈=  
)}(,, 2222 GVzvu ∈  

),(,)],,(),,[()],,(),,[(:},{{ 111212121212 GVvutvzufvvuueBfeB ∈==∈=  
},),(,,, 222222222 vtuzGVtzvu ≠≠∈  

),(,,)],,(),,[()],,(),,[(:},{{ 1111212121213 GVzvuzzuufvvuueBfeB ∈==∈=

 }),(,, 112222 vzGVzvu ≠∈  
),(,,)],,(),,[()],,(),,[(:},{{ 1111212121214 GVzvuzztufvvuueBfeB ∈==∈=

 },),(,,, 221122222 utvzGVztvu ≠≠∈  
),(,)],,(),,[()],,(),,[(:},{{ 111212121215 GVvuttzzfvvuueBfeB ∈==∈=  

)}(,,,},,{)(, 2222211111 GVtzvuvuGVtz ∈−∈  
It is clear that, each pair of the above sets is disjoint and U

5

1=

=
i

iBB . 

The next Proposition, characterizes ])[,( 210 GGfed  for all Bfe ∈},{ . 
Proposition 2. Let Bfe ∈},{ . 
(i) If 1},{ Bfe ∈ , then 1])[,( 210 =GGfed  

(ii) If 2},{ Bfe ∈ , then 2])[,( 210 =GGfed  

(iii) If 3},{ Bfe ∈ , then )],[],,([])[,( 111110210 GzuvudGGfed = ,  

where )],(),,[()],,(),,[( 21212121 zzuufvvuue ==  
(iv) If 4},{ Bfe ∈ , then 1)],[],,([])[,( 111110210 += GzuvudGGfed ,  
where )],(),,[()],,(),,[( 21212121 zztufvvuue ==  
(v) If 5},{ Bfe ∈ , then )],[],,([])[,( 111110210 GtzvudGGfed = ,  

where )],(),,[()],,(),,[( 21212121 ttzzfvvuue ==  
 

Proof. (i) Let 1},{ Bfe ∈  and )],(),,[()],,(),,[( 21212121 zvuufvvuue == .  
Using the definition of ),(0 fed , we have: 

),][),(),,((),][),(),,((min{1)][,( 212121212121210 GGzvuudGGuuuudGGfed +=  

=)}][),(),,((]),[),(),,(( 212121212121 GGzvvvdGGuuvvd
=+ ])}[),(),,((,1,1,0min{1 212121 GGzvvvd 101 =+ . 
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 (ii) Let 2},{ Bfe ∈  and )],(),,[()],,(),,[( 21212121 tvzufvvuue == . By 
definition of 2B , 2222 , vtuz ≠≠ . So due to distance between two vertices in 

][ 21 GG , the distances ])[),(),,(( 212121 GGzuuud  and ])[),(),,(( 212121 GGtvvvd  
are either 1 or 2. Therefore,  

),][),(),,((),][),(),,((min{1)][,( 212121212121210 GGtvuudGGzuuudGGfed +=  

=)}][),(),,((),][),(),,(( 212121212121 GGtvvvdGGzuvvd  

211}][),(),,((,1,1]),[),(),,((min{1 212121212121 =+=+ GGtvvvdGGzuuud  

 (iii) Let 3},{ Bfe ∈  and )],(),,[()],,(),,[( 21212121 zzuufvvuue == . 
By the definition of 3B we have 11 vz ≠ and hence  

),][),(),,((),][),(),,((min{1)][,( 212121212121210 GGzzuudGGuuuudGGfed +=

=)}][),(),,((),][),(),,(( 212121212121 GGzzvvdGGuuvvd  

)],[],,([)},(),,(,),(),,(min{1 111110111111111111 GzuvudGzvdGuvdGzudGuud =+ (iv) 

Let 4},{ Bfe ∈  and )],(),,[()],,(),,[( 21212121 zztufvvuue == . By definition 
of 4B , 11 vz ≠ , 22 ut ≠ . So 1),( 111 ≥Gzvd  and 1)][),(),,(( 212121 ≥GGtuuud .  
Therefore  

),][),(),,((),][),(),,((min{1)][,( 212121212121210 GGzzuudGGtuuudGGfed +=

=)}][),(),,((),][),(),,(( 212121212121 GGzzvvdGGtuvvd  

1)],[],,([11)},(,1,1),][),(),,((min{1 111110111212121 +=+=+ GzuvudGzvdGGtuuud (v) 
Let 5},{ Bfe ∈  and )],(),,[()],,(),,[( 21212121 ttzzfvvuue == . By the 
definition of 5B , 11 uz ≠ , 11 vz ≠ , 11 ut ≠  and 11 vt ≠ . So the edges ],[ 11 vu  
and ],[ 11 tz  of 1G  are distinct. Therefore  

),][),(),,((),][),(),,((min{1)][,( 212121212121210 GGttuudGGzzuudGGfed +=

=)}][),(),,((),][),(),,(( 212121212121 GGttvvdGGzzvvd

)],[],,([)},(),,(,),(),,(min{1 111110111111111111 GtzvudGtvdGzvdGtudGzud =+
and the proof is completed  
Now, we consider three subsets 21 ,CC  and 3C  of the set C  as follows: 

),(,)],,(),,[()],,(),,[(:},{{ 111212121211 GVzuzzuufvuuueCfeC ∈==∈=
where  )}(,, 2222 GVzvu ∈  

),(,)],,(),,[()],,(),,[(:},{{ 111212121212 GVzuzztufvuuueCfeC ∈==∈=
where  },),(,,, 222222222 vtutGVztvu ≠≠∈  
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),(,,)],,(),,[()],,(),,[(:},{{ 1111212121213 GVzvuzzvvftuuueCfeC ∈==∈=

where  },),(,,, 111122222 uzuvGVzvtu ≠≠∈  

Clearly, every pair of the above sets is disjoint and U
3

1=

=
i

iCC . 

In the following Proposition, we find ])[,( 210 GGfed  for all Cfe ∈},{ .    
 

Proposition 3. Let Cfe ∈},{ . 
 (i) If 1},{ Cfe ∈ , then 1])[,( 210 =GGfed  

 (ii) If 2},{ Cfe ∈ , then 2])[,( 210 =GGfed  

 (iii) If 3},{ Cfe ∈ , then  

=)][,( 210 GGfed }),(),,(min{1 111111 GzudGvud+ , 

where )],(),,[()],,(),,[( 21212121 zzvvftuuue ==  
Proof. (i) Let 1},{ Cfe ∈  and )],(),,[()],,(),,[( 21212121 zzuufvuuue == .  
By definition of ),(0 fed , we have:  

),][),(),,((),][),(),,((min{1)][,( 212121212121210 GGzzuudGGuuuudGGfed +=

101}1,1,1,0min{1)}][),(),,((),][),(),,(( 212121212121 =+=+=GGzzvudGGuuvud
 

 (ii) Let 2},{ Cfe ∈  and )],(),,[()],,(),,[( 21212121 zztufvuuue == . 
By definition of 2C , 2222 , vtut ≠≠ . Thus, due to the distance between 
two vertices in ][ 21 GG , the distances ])[),(),,(( 212121 GGtuuud  and 

])[),(),,(( 212121 GGtuvud  are either 1 or 2. So 

),][),(),,((),][),(),,((min{1)][,( 212121212121210 GGzzuudGGtuuudGGfed +=

=)}][),(),,((),][),(),,(( 212121212121 GGzzvudGGtuvud  

211}1],[),(),,((,1]),[),(),,((min{1 212121212121 =+=+ GGtuvudGGtuuud . 

 (iii) Let 3},{ Cfe ∈  and )],(),,[()],,(),,[( 21212121 zzvvftuuue == . By 

definition of 3C , 1111 , uzuv ≠≠ . Therefore  

),][),(),,((),][),(),,((min{1)][,( 212121212121210 GGzzuudGGvvuudGGfed +=

=)}][),(),,((),][),(),,(( 212121212121 GGzztudGGvvtud  

=+ )},(),,(,),(),,(min{1 111111111111 GzudGvudGzudGvud  

}),(),,(min{1 111111 GzudGvud+ , and the proof is completed  
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Definition 4. Let ))(),(( GEGVG =  be a graph. 
 (i) Let )(GVu∈ . Set; )}(],[:)({ GEuzGVzu ∈∈=Δ . In fact, uΔ  is the 
set of all vertices of G , which are adjacent to u. Suppose that, uδ  is the number 

of all vertices of G, which are adjacent to u. Clearly, ).deg( Guuu =Δ=δ  

 (ii) For each pair of distinct vertices )(, GVvu ∈ , let ),( vuδ  be the 
number of all vertices of G , which are adjacent both to u and v. Obviously, 

vuvu ΔΔ= I),(δ . 
 (iii) Let u, v and z be three vertices of G, which every pair of them is 
distinct. Assume that, ),,( zvuδ  denotes the number of all vertices of G which are 

adjacent to vertices u, v and z. It is easy to see that, zvuzvu ΔΔΔ= II),,(δ . 
 (iv) Suppose that, u, v and z be three vertices of graph G , which every 
pair of them is distinct. Denote by )~,~,( vuzN , the number of all vertices of G, 

which are adjacent to z, but neither to u nor to v. By the definition of )~,~,( vuzN , 
we have: 

=ΔΔΔΔ−Δ=ΔΔΔ−Δ=ΔΔ−Δ= )()()()()~,~,( vzuzzvuzzvuzvuzN IUIUIU   

),,(),(),()( vuzvzuzzvuzvzuzz δδδδ +−−=ΔΔΔ−ΔΔ+ΔΔ−Δ IIII .  
 

Proposition 5. 

=∑
∈Afe

GGfed
},{

210 )][,( ))()(2()(
4
1)()( 22111

1)(

2

2
2

1

GNGMGVGWGE
GV

−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
,  

where, ∑ ∑
∈ ΔΔ−∈

=
)(],[ )()(

)~,~,(2
222 2222

222
)(

GEvu GVz
vuz

vu

NGN
U

. 

Proof. At first, we need to find 2A  and 32 AA U . It is easy to see that 

∑ ∑
∈ ΔΔ−∈

=
)(],[ )()(

)~,~,(12
222 2222

222
)(

4
1

GEvu GVz
vuz

vu

NGVA
U

)()(
4
1

21 GNGV= ,  

=−+−= ∑
∈

))1()(()(
2
1

22

222 )(],[
2132 vu

GEvu
GEGVAA δδU   

[ ] [ ][ ]
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−∑ ∑∑

∈ ∈∈)(, )(,)(,
21

222 222222

22
1)()()(

2
1

GEvu GEvuGEvu
vuGEGV δδ  

))()()(()(
2
1

212
2

21 GMGEGEGV −+ , 
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Recall that, each pair of the sets )41( ≤≤ iAi  is disjoint and U
4

1=

=
i

iAA , 

then by 
Proposition 1, we have:  

+++==∑ ∑ ∑
∈ = ∈

321
},{

4

1 },{
210210 23])[,()][,( AAAGGfedGGfed

Afe i Afe i

 
===∈+∑ )]},(),,[()],,(),,[(,},{:),(1{ 212121214111 tvzvfvuuueAfeGvud  

++++ 4321 23 AAAA
 

===∈∑ )]},(),,[()],,(),,[(,},{:),({ 212121214111 tvzvfvuuueAfeGvud  

{ }
=++++ ∑∑

⊆= )(,
111

2
2232

4

1 111

),()()(
GVvui

i GvudGEAAAA  

=+++=+++
=

)()()()( 1
2

22321
2

2232

4

1

GWGEAAAAGWGEAAAA
i

i UUU  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ )()(

2

21 GEGV

+−++ ))()()(()(
2
1

212
2

21 GMGEGEGV +)()(
4
1

21 GNGV

=)()( 1
2

2 GWGE  

( )−++− )()()()()()()()(
2
1

21
2

2121
2

2
2

1 GEGVGEGVGEGVGEGV
 

+)()(
2
1

211 GMGV +)()(
4
1

21 GNGV =)()( 1
2

2 GWGE  

))()(2()(
4
1)()( 22111

1)(

2

2
2

1

GNGMGVGWGE
GV

−−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +

 

Proposition 6. 

=∑
∈Bfe

GGfed
},{

210 )][,( )()()()( 1
4

211

)(

2

2
2 0

2

GWGVGMGV e

GV

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 

Proof. For the proof of this proposition, we need to obtain  21 , BB  and 

4B . It is easy to see that:  
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(

2
211

2

)()(2
GV

GVGEB , 
2)(

2
12

2

)(2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

GV

GEB , 

))(2)(()()1)(()( 111

)(

2

2
2

)( 2
2

3
24

2

11

1

GEGMGVGVGVB
GV

GVu

u

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑

∈

δ

 

Afterwards, we find ∑
∈ 543},{

210 )][,(
BBBfe

GGfed
UU

. By Proposition 2.2, we have: 

=∑
∈ 3},{

210 )][,(
Bfe

GGfed

 
===∈∑ )]},(),,[()],,(),,[(,},{:)],[],,([{ 212121213111110 zzuufvvuueBfeGzuvud  

=∑ ∑
∈ ⊆)( )(]},[],,{[

111110
3

2
11 11111

)],[],,([)(
GVu GEzuvu

GzuvudGV

∑ ∑
∈

∈
∈)(],[

)(],[
},,{

111110
3

2
111

111
111

)],[],,([)(
2
1

GEvu
GEtz

vuz

GtzvudGV , 

=∑
∈ 4},{

210 )][,(
Bfe

GGfed  

===∈+∑ )]},(),,[()],,(),,[(,},{:1)],[],,([{ 212121214111110 zztufvvuueBfeGzuvud

=+− ∑ ∑
∈ ⊆

4
)( )(]},[],,{[

111110
3

2
4

2
11 11111

)],[],,([))()(( BGzuvudGVGV
GVu GEzuvu

 

4
)(],[

)(],[
},,{

111110
3

2
4

2
111

111
111

)],[],,([))()((
2
1 BGtzvudGVGV

GEvu
GEtz

vuz

+− ∑ ∑
∈

∈
∈

, 

=∑
∈ 5},{

210 )][,(
Bfe

GGfed  

===∈∑ )]},(),,[()],,(),,[(,},{:)],[],,([{ 212121215111110 ttzzfvvuueBfeGtzvud

[ ]
{ }

∑∑
∉
∈∈

1111

111111
,,

),(],[
111110

)(,

4
2 )],[],,([)(

2
1

vutz
GEtzGEvu

GtzvudGV . 

Based on the above computations and since each pair of )51( ≤≤ iBi  is 
disjoint, we have:  

=∑
∈ 543},{

210 )][,(
BBBfe

GGfed
UU

 

=∑ ∑
= ∈

5

3 },{
210 )][,(

i Bfe i

GGfed
[ ] { }

[ ]

+∑∑
∈

∈∈
)(,

,,
111110

)(,

3
2

111

111111

)],[],,([)(
2
1

GEtz
vuzGEvu

GtzvudGV  
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( )
[ ] { }

[ ]

++− ∑∑
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4

)(,
,,

111110
)(,
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4
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111
111111
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GEtz
vuzGEvu
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∉
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111111
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)(,
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4

)(,
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111110
)(,

4
2

111

111111

)],[],,([)(
2
1 BGtzvudGV

GEtz
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[ ]
{ }

=∑∑
∉
∈∈

1111

111111
,,

),(],[
111110

)(,

4
2 )],[],,([)(

2
1

vutz
GEtzGEvu

GtzvudGV  

)()())(2()(
2
1

1
4

241
4

24 00
GWGVBGWGVB ee +=+ . 

Now, since U
5

1=

=
i

iBB , we have:  

=∑
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GGfed
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Now, as the main purpose of this paper, we express the following theorem, which 
characterizes the first edge Wiener index of the composition of two graphs.  
 

Theorem. Let ))(),(( 111 GEGVG =  and ))(),(( 222 GEGVG =  be two 
simple undirected connected finite graphs, then 
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Proof. Recall that, each pair of the sets A, B and C is disjoint and union of 
them is the set of all two element subsets of ])[( 21 GGE . Now, using the 
definition of the first edge Wiener index, we obtain: 
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the proof is completed.  
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ON OMEGA POLYNOMIAL OF ((4,7)3) NETWORK 
 
 

MAHSA GHAZIa, MODJTABA GHORBANIa,  
KATALIN NAGYb, MIRCEA V. DIUDEAb 

 
 

ABSTRACT. The Omega polynomial ( )xΩ was recently proposed by Diudea 
[Carpath. J. Math., 2006, 22, 43-47]. It is defined on the ground of “opposite edge 
strips” ops. The related polynomial: Sadhana ( )Sd x  can also be calculated by 
ops counting. In this paper we compute these polynomials for the ((4,7)3) 
infinite network, designed by Trs(Ca(4,4)) sequence of map operations. 
 
Keywords: polygonal structures, Omega and Sadhana polynomials 
 
 
 

INTRODUCTION 
A molecular graph is a simple graph such that its vertices correspond to 

the atoms and the edges to the covalent bonds. Note that hydrogen atoms 
are often omitted. Mathematical calculations are necessary in view of exploring 
important concepts in chemistry. Mathematical chemistry is a branch of 
theoretical chemistry enabling discussion and prediction of molecular structures 
or molecular properties, using methods of discrete mathematics, without 
referring to quantum mechanics. Chemical graph theory is an important tool 
in the study of molecular structures. This theory had an important impact in 
the development of chemical sciences.  

Let G(V,E) be a connected graph, with the vertex set V(G) and edge 
set E(G). Two edges e = uv and f = xy of G are called codistant, e co f,  if 
they obey the following relation [1-3]:  

( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + =    (1) 
Relation co is reflexive, that is, e co e holds for any edge e of G; it is also 

symmetric, if e co f then f co e. In general, relation co is not transitive, an 
example showing this fact is the complete bipartite graph 2,nK . If “co” is also 
transitive, thus an equivalence relation, then G is called a co-graph and the set of 
edges });({:)( ecofGEfeC ∈=  is called an orthogonal cut oc of G, E(G) being 
the union of disjoint orthogonal cuts: 1 2( ) ... , ,k i jE G C C C C C i j= ∪ ∪ ∪ ∩ =∅ ≠ . 
Klavžar [4] has shown that relation co is a theta Djoković-Winkler relation [5,6]. 
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Let e = uv and f = xy be two edges of G which are opposite or 
topologically parallel and denote this relation by e op f. A set of opposite 
edges, within the same face/ring, eventually forming a strip of adjacent 
faces/rings, is called an opposite edge strip, ops, which is a quasi-ortogonal 
cut qoc (i. e., the transitivity relation is not necessarily obeyed). Note that co 
relation is defined in the whole graph while op is defined only in a face/ring. 
The length of ops is maximal irrespective of the starting edge. 

Let m(G, s) be the number of ops strips of length s. The Omega 
polynomial is defined as [1]  

( ) ( , ) s
s

x m G s xΩ = ⋅∑     (2) 
The first derivative (in x=1) equals the number of edges in the graph 

(1) ( , ) ( )
s
m G s s e E G′Ω = ⋅ = =∑    (3) 

A topological index, called Cluj-Ilmenau [2], CI=CI(G), was defined 
on Omega polynomial 

2( ) [ (1)] [ (1) (1)]{ }CI G ′ ′ ′′= Ω − Ω +Ω    (4) 
The Sadhana index Sd(G) was defined by Khadikar et al. [7,8] as  

( ) ( , )(| ( ) | )sSd G m G s E G s= −∑    (5) 
where m(G,s) is the number of strips of length s. The Sadhana polynomial 
Sd(G,x) was defined by Ashrafi et al. [9] 

| ( )|( , ) ( , ) E G s
sSd G x m G s x −= ⋅∑    (6) 

 Clearly, the Sadhana polynomial can be derived from the definition 
of Omega polynomial by replacing the exponent s by |E(G)-s|. Then the 
Sadhana index will be the first derivative of Sd(x) evaluated at x = 1.  

The aim of this study is to compute the Omega and Sadhana 
polynomials of the ((4,7)3) infinite network. This network can be seen as a 
modification of the graphene sheet [10-12]. 
 

RESULTS AND DISCUSSION 
The design of ((4,7)3) network can be achieved by Trs(Ca(4,4)) 

sequence of map operations [13-16], where Ca is the pro-chiral “Capra” 
operation and Trs is the truncation operation, performed on selected atoms 
(those having the valence four); (4,4) is the Schläfli symbol [17] for the 
planar net made by squares and vertices of degree/valence four, which was 
taken as a ground for the map operations. Figure 1 illustrates the ((4,7)3) 
pattern. Since any net has its co-net, depending of the start/end view, the 
co-net of ((4,7)3) net (Figure 2) will also be considered. 

Looking to these nets, one can see that there are k2+(k-1)2 squares in 
the net and  4k(k -1) in co-net, k being the number of repeat units. This implies 
there exactly exist 2(k2+(k-1)2) strips of length 2 in the net and 8k(k - 1) in co-
net and the others are of length 1. By definition of Omega polynomial, the 
formulas for the two polynomials and derived indices (Table 1) can be easily 
obtained. Some examples to prove the above formulas are collected in Table 2. 
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Figure 1. The 2-dimensional ((4,7)3) net (3×3 units) designed by the sequence of 
map operations  Trs(Ca(4,4)): non-optimized (left) and optimized (right) structure. 

    
Figure 2. The ops strips of length s=1 and s=2 in the 2-dimensional co-net  

(the repeat unit (left) and  2×2  units (right) of  ((4,7)3) pattern 
 

Table 1. Omega and Sadhana polynomials in the ((4,7)3) modified graphene 

Structure Formulas 

Net 2 2 2 2( ) 2[ ( 1) ] (10 14 4)x k k x k k xΩ = + − ⋅ + + − ⋅  
2(1) 18 6 6 (3 1) ( )x k k k e G′Ω = + = + =  

4 3 2( ) 2(162 108 5 2)CI G k k k k= + + + −  
2 22 2 18 6 2 2 18 6 1( ) 2[ ( 1) ] (10 14 4)k k k kSd x k k x k k x+ − + −= + − ⋅ + + − ⋅  

2 2(1) 6 (3 1)(14 10 3) (14 10 3)Sd k k k k e k k′ = + + − = ⋅ + −  
4 3 2( ) (1) 252 264 6 18Sd G Sd x x k k′= = + + −  

( ) 4 (5 3( 1))v G k k= + −  
Co-Net 2 2( ) 4 ( 1) (10 14 1)x k k x k k xΩ = − ⋅ + + − ⋅  

2(1) 18 6 1 ( )x k e G′Ω = + − =  
4 3 2( ) 2(162 108 13 5 1)CI G k k k k= + − − +  

2 218 6 3 2 18 6 2( ) 4 ( 1) (10 14 1)k k k kSd x k k x k k x+ − + −= − ⋅ + + − ⋅  
2 2 2(1) 2(7 5 1)(18 6 1) 2(7 5 1)Sd k k k k k k e′ = + − + − = + − ⋅  

4 3 2( ) (1) 252 264 10 22 2Sd G Sd x x k k′= = + + − +  
( ) 4 (5 3( 1))v G k k= + −  

 
Table 2. Examples for the formulas in Table 1. 

k Omega polynomial v(G) e(G) CI(G) Sd(G) 
 Net     
2 64X+10X2 64 84 6952 6132 
3 128X+26X2 132 180 32168 27540 
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k Omega polynomial v(G) e(G) CI(G) Sd(G) 
4 212X+50X2 224 312 96932 81432 
5 316X+82X2 340 480 229756 190560 
6 440X+122X2 480 684 466928 383724 
7 584X+170X2 644 924 852512 695772 
 Co-Net     

2 67X+8X2 64 83 6790 6142 
3 131X+24X2 132 179 31814 27566 
4 215X+48X2 224 311 96314 81482 
5 319X+80X2 340 479 228802 190642 
6 443X+120X2 480 683 465566 383846 
7 587X+168X2 644 923 850670 695942 

 
CONCLUSIONS 
 Omega and Sadhana polynomials are useful theoretical tools in 
describing polygonal structures, such as the modified graphene of ((4,7)3) pattern. 
This modification can be acheved by using sequences of map operations. 

Formulas to calculate the above polynomials and derived indices in 
an infinite ((4,7)3) lattice were given, along with some examples. 
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OMEGA POLYNOMIAL IN TITANIUM OXIDE NANOTUBES 
 
 

M. GHORBANIa*, M.A. HOSSEINZADEHb, M.V. DIUDEAc 

 
 

ABSTRACT. A new counting polynomial, called Omega ( , )G xΩ , was recently 
proposed by Diudea. It is defined on the ground of “opposite edge strips” ops. 
Two related polynomials: Sadhana ( , )Sd G x and Theta ( , )G xΘ  polynomials 
can also be calculated by ops counting. Close formulas for calculating these 
three polynomials in infinite nano-structures resulted by embedding the 
titanium dioxide pattern in plane, cylinder and torus are derived. For the 
design of titanium dioxide pattern, a procedure based on a sequence of 
map operations is proposed. 
 
Keywords: Titanium oxide, Omega polynomial, Sadhana polynomial, Theta 
polynomial  
 
 
 

INTRODUCTION 
 

Nano-era is a suitable name for the period started with the discovery of 
C60 fullerene and carbon nanotubes [1-3]. It opened a new gate for the science 
and technology at nanometer scale with wide implications in the human 
activities. After the discovery of carbon nanotubes, the question about the 
possible existence of nanotubular forms of other elements was addressed 
by scientists and they tried to obtain inorganic nanostructures [4-6]. Various 
oxides, sulfides, selenides, borates, silicates, etc of many metals show very 
ordered structures at the nano-scale. Many of these compounds form nanotubes, 
similar to those of carbon: MX2, M=Mo, W, Ta, In, Zn, Ti, Cd, X=O, S, Se, Te, 
CB×, BN, etc. In the last years, oxides and other above mentioned inorganic 
substances found applications in the design of nanostructured functional 
materials as films, nanorods, porous systems, nanoclusters and nanocrystallites 
or as nanofibers [7-13]. 

Among these nanostructures, the titanium nanotubular materials, called 
“titania” by a generic name, are of high interest due to their chemical inertness, 
endurance, strong oxidizing power, large surface area, high photocatalytic activity, 
non-toxicity and low production cost. The applications of TiO2 nanotubes 
include photocatalysis, solar cells systems, nanoscale materials for lithium-ion 
batteries, etc. The titanium oxide nanotubes were synthesized using various 
methods and precursors [14-20], carbon nanotubes, porous alumina or polymer 
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membranes as templates [21-27], anodic oxidation of Ti [28-30], sol–gel 
technique [31-35] or sonochemical synthesis [36]. Models of possible growth 
mechanisms of titanium nanotubes, the atomic structure of the nanotube walls 
and their stacking mode are discussed [19,20,35]. TiO2 nanotubes are 
semiconductors with a wide band gap and their stability increases with 
increasing of their diameters. The numerous studies on the production and 
technological applications of nanotubular titania also require theoretical studies 
on stability and other properties, the topological ones included [37-42]. 

 

DESIGN OF TITANIUM OXIDE LATTICE 
 

A map M is a combinatorial representation of a (closed) surface. Several 
transformations or operations on maps are known and used for various purposes. 
We limit here to describe only those operations needed here to build the TiO2 
pattern. For other operations, the reader is invited to consult refs [43-48]. 

Medial Med is achieved by putting new vertices in the middle of the 
original edges. Join two vertices if the edges span an angle (and are consecutive 
within a rotation path around their common vertex in M). Medial is a 4-valent 
graph and Med(M) = Med(Du(M)). 

Dualization of a map starts by locating a point in the center of each 
face. Next, two such points are joined if their corresponding faces share a 
common edge. It is the (Poincaré) dual Du(M). The vertices of Du(M) represent 
faces in M and vice-versa. 

Figure 1 illustrates the sequence of map operations leading to the TiO2 
pattern: Du(Med(6,6)), the polyhex pattern being represented in Schläfli’s 
symbols. Correspondingly, the TiO2 pattern will be denoted as: (4(3,6)), squares 
of a bipartite lattice of 3 and 6 connected atoms, while the medial pattern: 
((3,6)4). Clearly, the TiO2 pattern can be done simply by putting a point in the 
centre of hexagons of the (6,6) pattern and join it alternately with the points 
on the contour. It is noteworthy that our sequence of operations is general, 
enabling transformation of the (6,6) pattern embedded on any surface and 
more over, it provides a rational procedure for related patterns, to be exploited 
in cage/cluster building. 

 

   

Figure 1. Way to TiO2 lattice: (left) polyhex (6,6) pattern; (central) Med(6,6); (right) Du(Med(6,6)) 
 

OMEGA AND RELATED POLYNOMIALS 
 

Let G(V,E) be a connected graph, with the vertex set V(G) and edge 
set E(G). Two edges e = uv and f = xy  of G are called codistant  e co f  if 
they obey the following relation [49,50]:  
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( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + =    (1) 
Relation co is reflexive, that is, e co e holds for any edge e of G; it is also 

symmetric, if e co f  then f co e. In general, relation co is not transitive, an 
example showing this fact is the complete bipartite graph 2,nK . If “co” is also 
transitive, thus an equivalence relation, then G is called a co-graph and the set of 
edges });({:)( ecofGEfeC ∈=  is called an orthogonal cut oc of G, E(G) being 
the union of disjoint orthogonal cuts: 1 2( ) ... , ,k i jE G C C C C C i j= ∪ ∪ ∪ ∩ =∅ ≠ . 
Klavžar [51] has shown that relation co is a theta Djoković-Winkler relation [52,53]. 

Let e = uv and f = xy be two edges of G which are opposite or 
topologically parallel and denote this relation by e op f. A set of opposite 
edges, within the same face/ring, eventually forming a strip of adjacent 
faces/rings, is called an opposite edge strip ops, which is a quasi-ortogonal 
cut qoc (i.e., the transitivity relation is not necessarily obeyed). Note that co 
relation is defined in the whole graph while op is defined only in a face/ring. 
The length of ops is maximal irrespective of the starting edge. 

Let m(G,s) be the number of ops strips of length s. The Omega 
polynomial is defined as [54]:  

( , ) ( , ) s
s

G x m G s xΩ = ⋅∑      (2) 
The first derivative (in x=1) equals the number of edges in the graph 

( ,1) ( , ) ( )
s

G m G s s e E G′Ω = ⋅ = =∑     (3) 
A topological index, called Cluj-Ilmenau,55 CI=CI(G), was defined on 

Omega polynomial 
2( ) [ ( ,1)] [ ( ,1) ( ,1)]{ }CI G G G G′ ′ ′′= Ω − Ω +Ω    (4) 

An example is given in Figure 2, which illustrates just the pattern of 
TiO2 lattice. 

Figure 2. TiO2 pattern; counting polynomial examples:

  3 5( , ) 3 3G x x xΩ = + ; ( ,1) 24 ( )G e G′Ω = = ; ( ) 474CI G = ; 

  19 21( , ) 3 3Sd G x x x= + ; ( ,1) 120 ( )Sd G Sd G′ = = ; 

  3 5( , ) 9 15G x x xΘ = + ; ( ,1) 27 75 102 ( )G G′Θ = + = = Θ  
The Sadhana index Sd(G) was defined by Khadikar et al. [56,57] as  

( ) ( , )(| ( ) | )sSd G m G s E G s= −∑     (5) 
where m(G,s) is the number of strips of length s. The Sadhana polynomial 
Sd(G,x) was defined by Ashrafi et al. [58] as  
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| ( )|( , ) ( , ) E G s
sSd G x m G s x −= ⋅∑    (6) 

 Clearly, the Sadhana polynomial can be derived from the definition 
of Omega polynomial by replacing the exponent s by |E(G)-s|. Then the 
Sadhana index will be the first derivative of Sd(G, x) evaluated at x=1.  
 A third related polynomial is the Theta polynomial [59], defined in 
co-graphs as 

 ( , ) ( , ) s
s

G x s m G s xΘ = × ⋅∑     (7) 
The aim of this study is to compute the Omega and its related counting 

polynomials in TiO2 lattice, embedded in the plane but also in the cylinder 
and torus. 
  
RESULTS AND DISCUSSION 
 

 We begin with the 2-dimensional graph, named K, (Figure 3). The 
various types of ops are drawn by arrows. 

1 2 3 4 . . . . p

1

2

3

q

.

.

.

e1

e2 e3  
Figure 3. The ops strips of a 2-dimensional graph K of Du(Med(6,6)) TiO2 pattern. 
 

By definition of Omega polynomial and Table 1 one can see that:  
 

Table 1. The number of ops ei, 1≤i≤6 in the graph K. 

No. Number of ops Type of ops 
q 2p+1 e1 

2

2
M  

3
5

2min{2p,q}-1

⎧
⎪
⎨
⎪
⎩
M

 e2 

{2p q 1
q- 2p+1

− +  {2 1 2 1
4 1 2 .

q p q
p q p
+ ≥ ≥
+ ≥  e3 

 
 Now, we can derive the following formulas for the counting polynomials 
in the infinite 2-dimensional graph K: 
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2 1 3 5 2 1 2 1

2 1 3 5 4 -1 4 1

2( ... ) (2 1)      2 1
Ω( , )  

2( ... ) ( - 2 1)      2

p q q

p p p

qx x x x p q x p q
K x

qx x x x q p x q p

+ − +

+ +

⎧ + + + + + − + > ≥⎪= ⎨
⎪ + + + + + + ≥⎩

(8) 

 

| ( )| 2 -1 | ( )| 3 | ( )| 5 | ( )| 2 1

( )| 2 -1

| ( )| 2 -1 | ( )| 3 | ( )| 5 | ( )| 4 1

| ( )| 4 -1

2( ... )

(2 - 1)        2 1
( , )  

2( ... )

( - 2 1)      2

E K p E K E K E K q

E K q

E K p E K E K E K p

E K p

qx x x x

p q x p q
Sd K x

qx x x x

q p x q p

− − − − +

−

− − − − +

−

⎧ + + + +
⎪
⎪+ + > ≥⎪= ⎨
⎪ + + + +
⎪
⎪+ + ≥⎩

(9) 

 
3 2 1 2 1

3 4 -1 4 1

( ) 2(3 ... (2 1) ) (2 1)(2 1)     2 1
( , )  

( ) 2(3 ... (4 1) ) ( - 2 1)(4 1) 2

q q

p p

a x x q x p q q x p q
θ K x

a x x p x q p p x q p

− +

+

⎧ + + + − + − + + > ≥⎪= ⎨
⎪ + + + − + + + ≥⎩

(10) 

 

in which 2 1( ) (2 1) pa x q p x += + . Examples are given in Appendix. 
We now consider the tubular structure G (Figure 4). Again the different 

cases of ops are drawn. One can see that |S(e1)| = 2p and |S(e2)| = 2q+1. 
On the other hand, there are q(e1) and 2p(e2) similar edges. This leads to 
the formulas 

 2p 2q+1Ω( , ) q  + 2pG x x x= ⋅ ⋅      (11) 
 | ( )| 2p | ( )| 2q-1( , ) q  + 2pE G E GSd G x x x− −= ⋅ ⋅    (12) 
 2p 2q+1( , ) 2pq  + 2p(2q+1)θ G x x x= ⋅ ⋅    (13) 

 

 Figure 5 illustrates the case of a torus, denoted by H; it shows that 
there are two types of ops and their number is: |S(e1)| = 2p, |S(e2)|=2pq. On 
the other hand, there are 2q similar edges for each of e1, e2, respectively.  
With the above considerations we have the following formulas: 
 

 2p 2pqΩ( , ) qx  + 2xH x =     (14) 
 | ( )| 2p | ( )| 2pq( , ) qx  + 2xE H E HSd H x − −=    (15) 
 2p 2pq( , ) 2pqx  + 4pqxθ H x =     (16) 

 
CONCLUSIONS 
 

 Nano-structured titania can be described, in topological terms by the 
aid of counting polynomials, such as Omega, Sadhana and Theta polynomials. 

Close formulas for calculating these three polynomials in infinite nano-
structures resulted by embedding the titanium dioxide pattern in plane, 
cylinder and torus are derived. A procedure based on a sequence of map 
operations is proposed for the design of titanium dioxide pattern. 
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1 2 3 4 . . . . p

1

2

3

q

.

.

.

e1

e2  
Figure 4. The ops strips of the nanotube  G=TU[p,q]. 

 1 2 3 4 . . . . p

1

2

3

q

.

.

.

e1

e2  
Figure 5. The ops strips of the nanotorus H=T[p,q]. 
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APPENDIX 

Examples for calculating Omega polynomial. 
1. Case of infinite 2-dimensional graph K. 

We have the Omega polynomial: 
2 1 3 5 2 1 2 12( ... ) (2 1)       p q qqx x x x p q x+ − ++ + + + + − +  

1.1. Case: 2 ,2 | ,p q p q> >  
If q = 6, p = 5 then, the graph is: 
 

 

 

 
and 

11 3 5 7 9 11 13( , ) 6 2( ) 5G x x x x x x x xΩ = + + + + + +  
1.2. Case: 2 , 2 | ,p q p q> > /  
Now if p = 4, q = 7 then, the graph is: 

 
 

and 
9 3 5 7 9 13 15( , ) 7 2( ) 2G x x x x x x x xΩ = + + + + + +  

We have also 
2 1 3 5 4 -1 4 12( ... ) ( - 2 1)      p p pqx x x x q p x+ ++ + + + + +  

1.3. Case: 2q p≥ . If p = 4, q = 9 then, the graph is: 
 

 
and 

9 3 5 7 9 11 13 15 17( , ) 9 2( ) 2G x x x x x x x x x xΩ = + + + + + + + +  
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2. Case of nanotubes G [p,q]. 
We have the Omega polynomial: 

2p 2q+1Ω( , ) qx  + 2pxG x =  
Now, if p = 5, q = 4 then, the graph is: 

 
and  

10 9( , ) 4 10G x x xΩ = +  
Or, if p = 6, q = 6 then, the graph is : 

 
 

and 
12 13( , ) 6 12G x x xΩ = +  

3. Case of nanotori H [p,q]. 

We have the Omega polynomial: 
2p 2pqΩ( , ) qx  + 2xH x =  

Now, if p = 4, q = 5 then, the graph is: 
 
 
 

 
 
 
 
and 

8 40( , ) 5 2H x x xΩ = +  
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OMEGA POLYNOMIAL IN P-TYPE SURFACE NETWORKS 
 
 

MONICA STEFU∗, VIRGINIA BUCILA∗, M. V. DIUDEA∗ 
 
 

ABSTRACT. Design of two crystal-like networks was achieved by embedding a 
zig-zag Z-unit and its corresponding armchair A-unit, of octahedral symmetry, in 
the P-type surface, by means of the original software Nano Studio. The 
hypothetical networks, thus obtained, were characterized in their topology 
by Omega counting polynomial. 

 
Keywords: crystal-like networks, Omega polynomials, topology 

 
 
 
 
INTRODUCTION 
 In the last two decades, novel carbon allotropes have been discovered 
and studied for applications in nano-technology. Among the carbon structures, 
fullerenes (zero-dimensional), nanotubes (one dimensional), graphene (two 
dimensional) and spongy carbon (three dimensional) were the most challenging 
[1,2]. Inorganic clusters, like zeolites, also attracted the attention of scientists. 
Recent articles in crystallography promoted the idea of topological description 
and classification of crystal structures [3-8]. 
 The present study deals with two hypothetical crystal-like nano-
carbon structures, of which topology is described in terms of Omega counting 
polynomial. 
 
BACKGROUND ON OMEGA POLYNOMIAL 

In a connected graph G(V,E), with the vertex set V(G) and edge set 
E(G), two edges e = uv and f = xy of G are called codistant e co f  if they 
obey the relation [9]: 

( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + =    (1) 
which is reflexive, that is, e co e holds for any edge e of G, and symmetric, if e co f 
then f co e. In general, relation co is not transitive; if “co” is also transitive, thus it 
is an equivalence relation, then G is called a co-graph and the set of edges 

});({:)( ecofGEfeC ∈=  is called an orthogonal cut oc of G, E(G) being 
the union of disjoint orthogonal cuts: 1 2( ) ... , ,k i jE G C C C C C i j= ∪ ∪ ∪ ∩ =∅ ≠ . 
Klavžar [10] has shown that relation co is a theta Djoković-Winkler relation [11,12]. 

                                                 
∗ Faculty of Chemistry and Chemical Engineering, “Babes-Bolyai” University, Arany Janos Str. 11, 

400084, Cluj, Romania 
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We say that edges e and f of a plane graph G are in relation opposite, e 
op f, if they are opposite edges of an inner face of G. Note that the relation 
co is defined in the whole graph while op is defined only in faces. Using the 
relation op we can partition the edge set of G into opposite edge strips, ops. 
An ops is a quasi-orthogonal cut qoc, since ops is not transitive. 

Let G be a connected graph and 1 2, ,..., kS S S be the ops strips of G. 
Then the ops strips form a partition of E(G).  The length of ops is taken as 
maximum. It depends on the size of the maximum fold face/ring Fmax/Rmax 
considered, so that any result on Omega polynomial will have this specification. 

Denote by m(G,s) the number of ops strips of length s and define 
the Omega polynomial as [13-15]: 

( , ) ( , ) s
s

G x m G s xΩ = ⋅∑      (2) 
Its first derivative (in x=1) equals the number of edges in the graph: 

( ) ( ) ( )' ,1 ,
s

G m G s s e E GΩ = ⋅ = =∑         (3) 
On Omega polynomial, the Cluj-Ilmenau index [9], CI=CI(G), was 

defined: 
2( ) [ ( ,1)] [ ( ,1) ( ,1)]{ }CI G G G G′ ′ ′′= Ω − Ω +Ω        (4) 

The Omega polynomial partitions the edge set of the molecular 
graph into opposite edge strips, by the length of the strips.  

 
OMEGA POLYNOMIAL IN TWO P-SURFACE CRYSTAL NETWORKS  

Design of two crystal-like networks was achieved by identifying the 
opposite open faces of a zig-zag Z-unit and its corresponding armchair A-
unit (Figure 1), of octahedral symmetry and embedding them in the P-type 
surface, with the help of original software Nano Studio [16] . 
 Omega polynomials for the repeat units of the Z_P and A_P structures 
(Figure 2) herein discussed are listed in Table 1. The polynomials are 
calculated at Rmax[8] as follows.  

In the Z_P structure, the term at exponent 1 counts the edges in 
odd faces/rings that are not counted in even rings. The exponent 2 refers to 
isolated even rings while the exponent 4 represents strips of three even-
membered faces/rings. 
 In the A_P structure, there are no odd faces so the polynomial has 
no terms at exponent 1. The exponent 6 represents strips of five even-
membered faces/rings.   
 

  
Figure 1. Units of the Z_P (left) and A_P (right) crystal-like structures 
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The polynomials are calculated on a cubic lattice of dimension (k,k,k), at 
Rmax[8]; following similar considerations and analyzing the calculations 
made by our original Nano Studio [16] software, we derived the formulas, 
listed in Table2, and provided examples for some k-values, as well.  
 

  
Figure 2. The Z_P (left) and A_P (right) crystal-like structures 

 
Table 1. Topological data for the units of Z_P and A_P structures 

Octahedral 
structure 

Vertices Edges Faces 
f8 

Open 
Faces 

Omega Polynomial 
Rmax[8] 

CI 

Z_P 120 168 12 6 421 123648 XXX ++  27840 
A_P 144 192 12 6 2 4 612 24 12+ +X X X  36000 

 
In the Z_P and A_P network structures, the term at exponent 8 

represent the number of edge strips of length 8; these strips cross only  f8 
when link 4 Z_P units, and cross faces f8 and f6 when link 4 A_P units 
respectively, so it is present starting with k=2. In case of Z_P net, the term 
at exponent 8 counts the large hollows, ordered as in zeolites, natural 
alumino-silicates, used as molecular sieves or in chemical catalysis. 

 
 

Table 2. Omega polynomial in Z_P and A_P networks 

Formulas for Z_P network  
2 1 2 2 2 4 2 8

max( , , [8]) 48 12 (4 2 1) 3 (5 3 4) 3 ( 1)Ω = + − + + + − + −X k R k X k k k X k k k X k k X  
)115(12)1(38)435(34)124(12248)1( 22222' −=−⋅+−+⋅++−⋅+=Ω kkkkkKkkkkk  

)42337(12)1( 2'' +−=Ω kkk  
)1613390675(48)( 2345 −+−+−= kkkkkkkCI  

Formulas for A_P network 

∑
=

−+ ++−+++=Ω
k

i

ik XkXkXkkXkkkXRkX
2

)12(41528242
max 2412)1(3)1(1212])8[,,(  

)115(12)1( 2' +=Ω kk  
)128033203(4)1( 23'' +−+=Ω kkkk  

)12777816710808100(4)( 2345 −+−−+= kkkkkkkCI  
k Omega polynomial: examples CI 
 Rmax[8], Z_P network  

1 48X+36X2+12X4 27840 
2 192X+312X2+132X4+6X8 1933728 
3 432X+1116X2+450X4+36X8 22567104 
4 768X+2736X2+1056X4+108X8 128288064 
5 1200X+5460X2+2040X4+240X8 492768960 
6 1728X+9576X2+3492X4+450X8 1478124000 
 Rmax[8] A_P network  
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 Table 2-continuation  
1 12X2+24X4+12X6 36000 
2 24X2+72X4+6X8+48X11+48X12 2199792 
3 36X2+144X4+36X8+72X12+108X16+72X20 24609456 
4 48X2+240X4+108X8+96X12+96X20+192X21+96X28 136947840 
5 60X2+360X4+240X8+120X12+120X20+300X26+120X28+120X36 519300960 
6 72X2+504X4+450X8+144X12+144X20+144X28+432X31+144X36+144X44 1544324400 
7 84X2+672X4+756X8+168X12+168X20+168X28+756X36+168X44+168X52 3882737712 
 
Formulas for the number of atoms in the two networks are given in Table 3. 
 

Table 3. Number of atoms | ( ) |v V G=  

Z_P network structures 
3120 kvk ⋅=  

A_P network structures

)1(24144 23 −⋅−⋅= kkkvk  
k 1 2 3 4 5 6 

v for Z_P 120 960 3240 7680 15000 25920 
v for A_P 144 1056 3456 8064 15600 26784 
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ABSTRACT. Design of a hypothetical crystal network, by using Trs(P4(M)) 
sequence of map operations, is presented. It is shown that the octahedral 
monomer is the most stable, among the similar structures designed from 
the Platonic solids, as hydrogenated species, and all these have a moderate 
stability, between adamantane and C60 fullerene, as calculated at the PM3 
level of theory. The topology of the network is described in terms of Omega 
polynomial, function of the net parameters. Close formulas for this polynomial 
and examples are tabulated. 
 
Keywords: Omega polynomial; crystal-like network. 
 
 

INTRODUCTION 
In the last two decades, several new carbon allotropes have been 

discovered and studied for applications in nano-technology. Among the 
carbon structures, fullerenes (zero-dimensional), nanotubes (one dimensional), 
graphene (two dimensional) and spongy nanostructures (three dimensional) 
were the most studied [1,2]. Inorganic compounds also attracted the attention of 
scientists. Recent articles in crystallography promoted the idea of topological 
description and classification of crystal structures [3-7].  

The present study deals with a hypothetical crystal-like nano-carbon 
structure, designed by a sequence of map operations [8-11], of which topology 
is described in terms of Omega polynomial. 

 

OMEGA POLYNOMIAL 
Let G(V,E) be a graph, with V(G) and E(G) being the sets of vertices/ 

atoms and edges/bonds, respectively. Two edges e and f of a plane graph 
G are in relation opposite, e op f, if they are opposite edges of an inner face 
of G. Relation op will partition the edges set of G into opposite edge strips ops, 
as follows. (i) Any two subsequent edges of an ops are in op relation; (ii) Any 
three subsequent edges of such a strip belong to adjacent faces; (iii) In a plane 
graph, the inner dual of an ops is a path, an open or a closed one (however, 
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in 3D networks, the ring/face interchanging will provide ops which are no 
more paths); (iv) The ops is taken as maximum possible, irrespective of the 
starting edge [12-18].  

The Ω-polynomial [12] is defined on the ground of opposite edge 
strips ops 1 2( ) , ,..., kS G S S S= in the graph. Denoting by m the number of ops of 
length s=|S|, then we can write 

( ) s
s

x m xΩ = ⋅∑       (1) 
The first derivative (in x=1) can be taken as a graph invariant or a 

topological index; in this case, it equals the number of edges in the graph. 
(1) ( )

s
m s e E G′Ω = ⋅ = =∑     (2) 

On Omega polynomial, the Cluj-Ilmenau index [13], CI=CI(G), was defined: 
2( ) [ ( ,1)] [ ( ,1) ( ,1)]{ }CI G G G G′ ′ ′′= Ω − Ω +Ω       (3) 

The first derivative (in x=1) can be taken as a graph invariant or a 
topological index: 

 (1) ( )
s
m s E G′Ω = ⋅ =∑      (4) 

In tree graphs, the Omega polynomial simply counts the non-opposite 
edges, being included in the term of exponent c=1.  

 
LATTICE BUILDING AND MONOMER STABILITY 

The lattice was constructed by using the unit designed with the net 
operation sequence Trs(P4(M)), where M=Oct (Octahedron). More about 
map/net operations, the reader can find in refs. [8-11]. 

The net (Figure 1) was built up by identifying the identical (quadrilateral) 
faces of the unit structure The crystal-like structure shows oriented hollows, 
as those encountered in zeolites, natural alumino-silicates widely used in 
synthetic chemistry as catalysts.  

The unit involved in these constructions, namely Trs(P4(M)), M=Oct, 
as a hydrogenated structure, shows moderate stability as given by their heat of 
formation HF, total energy TE and HOMO-LUMO Gap HLGAP, calculated 
at the PM3 level of theory (Table 1).  

 

  
Figure 1: Network Trs(P4(M)); [2,2,2]; M=Octahedron, in two different views. 

 

For example, the total energy per heavy atoms of the structures in 
Table 1 are between the values of adamantane (-3305.19 kcal/mol), which 
is the most related small structure (see Figure 2, left, in red) and C60 (-2722.45 
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kcal/mol), the standard molecule in nanostructures. The same is true about the 
HOMO-LUMO gap. Calculations by using a density functional-based tight 
binding method combined with the self-consistent charge technique (SCC-
DFTB) on hydrogenated units of diamond and a diamond-like network19 
have shown the same ordering of stability as given by PM3 approach; thus, 
our results reported here can be considered as pertinent ones. 

 

Table 1. Quantum Chemistry PM3 data for some units designed by Trs(P4(M)): 
Heat of Formation HF, Total energy TE and HOMO-LUMO Gap HLGAP 

M 
 

N-heavy
atoms 

HF 
(kcal/mol) 

HF/N 
heavy 

TE 
(kcal/mol) 

TE/N 
heavy 

HLGAP 
(eV) 

Sym. 

Ico 110 1216.81 11.06 -328026 -2982.05 11.79 Ih 
Oct 44 448.67 10.19 -131248 -2982.92 12.17 oh 
T 22 308.48 14.022 -65540 -2979.09 11.99 Td 

 
OMEGA POLYNOMIAL IN Trs(P4(M)) Network 

The Omega polynomial (calculated at Rmax[4]) for the investigated 
network is as follows: 

2)2(63

32

)1(3)1(4

)1)2((24))2()1((12)1(24),(
axaxa

xaaxaaaxaaxG

−+−+

+−+−++++=Ω     (5) 

2( ,1) | ( ) | 36 ( 1)G E G a a′Ω = = +                (6) 
6 5 4 3 2( ) 1296 2544 1344 144 144 120 24CI G a a a a a a= + + − + − +                          (7) 

The above formulas can be verified with the examples listed in Table 2. 
Calculations were performed by our Nano Studio20 software program. 
 

   
Figure 2. Platonic structures transformed by Trs(P4(M)) sequence of map 

operations: M=Tetrahedron T (left); M=Octahedron Oct (central) and 
M=Icosahedron Ico (right). The red color is only to show the related substructures. 

 

Table 2. Examples of Omega polynomial and CI calculation 
a Omega polynomial CI 
1 

21248 xx+ 5088 
2 

16632 342472144 xxxxx ++++  185064 
3 

36632 63296156288 xxxxx ++++  1668912 
4 

64632 9108216264480 xxxxx ++++  8250168 
5 

100632 12256384963720 xxxxx ++++  29025024 
6 

144632 155006005521008 xxxxx ++++  81963528 
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CONCLUSIONS 
A hypothetical crystal network was built up by using a repeat unit 

designed by Trs(P4(M)) sequence of map operations. It was shown that the 
octahedral monomer (i.e., the repeat unit of this network) is the most stable (as 
hydrogenated species), among the similar structures derived from the Platonic 
solids, and all these have a moderate stability, between adamantane and C60 
fullerene, as calculated at the PM3 level of theory. The topology of the network 
was described in terms of Omega polynomial, function of the net parameters. 
Close formulas for this polynomial and examples were tabulated. Omega 
polynomial description proved to be a simple and efficient method in topological 
characterization of new designed nano-structures. 
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ABSTRACT. Design of a hypothetical carbon crystal lattice, embedded in the 
P-type surface, was performed by identifying two opposite open faces of a 
unit, of octahedral symmetry, by the aid of Nano Studio software. The topology 
of the net and its co-net, thus obtained, was characterized by Omega and 
Sadhana counting polynomials. 

 
Keywords: Omega polynomial, Sadhana polynomial, P-type surface networks  

 
 
 
INTRODUCTION 
 

 Among the carbon allotropes, discovered in the nano-era, fullerenes 
(zero-dimensional), nanotubes (one dimensional), graphene (two dimensional) 
and spongy carbon (three dimensional) were the most challenging [1,2]. Inorganic 
compounds including oxides, sulfides, selenides, borates, silicates, etc. of many 
metals, also found applications as nano-structured functional materials [3-12].  

Zeolites are natural or synthetic alumino-silicates with an open three-
dimensional crystal structure. Zeolites are micro-porous solids known as 
"molecular sieves." The term molecular sieve refers to the property of these 
materials to selectively sort molecules, based primarily on a size exclusion 
process. This is due to a regular structure of pores, of molecular dimensions, 
forming channels [13-17]. 

The rigorous and often aesthetically appealing architecture of 
crystal networks attracted the interest of scientists in a broad area, from 
crystallographers, to chemists and mathematicians. 
 The present study deals with a hypothetical carbon crystal-like 
nanostructure, of which topology is described in terms of Omega and Sadhana 
counting polynomial. 
 
NETWORK DESIGN 
 

 The hypothetical carbon crystal network herein discussed was built 
up by identifying two opposite open faces of a unit (Figure 1, left), of octahedral 
symmetry, by the aid of Nano Studio software [18], also enabling their embedding 
in the P-type surface [1,2], belonging to the space group Pn 3 m.  
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As any net has its co-net, this was identified to the structure presented 
in Figure 1, right. Indeed, when constructing the two infinite networks (Figure 2), 
a perfect superposition (Figure 2, central) can be evidenced: in fact is one and 
the same infinite network, differences appearing only at the boundaries. Thus, 
the topological characterization will be done on cubic (k,k,k) domains, 
separately, for the net and its co-net (see below).  

 

v=98; e=120; f6=8; f8=12 v=144; e=192; f6=20; f8=24 
Figure 1. Units of the net (left) and co-net (right) 

 

  
 

Figure 2. The net (3,3,3- left), superimposed net&co-net (2,2,2-central)  
and co-net (3,3,3- right) in a cubic (k,k,k) domain. 

 
COUNTING POLYNOMIALS 
 

A counting polynomial [19] is a representation of a graph G(V,E), with 
the exponent k showing the extent of partitions p(G), )()( GPGp =∪  of a 
graph property P(G) while the coefficient ( )p k  are related to the number of 
partitions of extent k. 

( ) ( ) k
k

P x p k x= ⋅∑       (1) 
Let G be a connected graph, with the vertex set V(G) and edge set E(G). 

Two edges e=(u,v) and  f=(x,y)  of G are called codistant (briefly: e co f ) if 
the notation can be selected such that [20]:  

( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + =    (2) 
where d is the usual shortest-path distance function. The above relation co 
is reflexive (e co e) and symmetric (e co f) for any edge e of G but in general is 
not transitive. 

A graph is called a co-graph if the relation co is also transitive and thus 
an equivalence relation. 
 Let });({:)( ecofGEfeC ∈=  be the set of edges in G that are 
codistant to )(GEe∈ . The set C(e) can be obtained by an orthogonal edge-
cutting procedure: take  a straight line segment, orthogonal to the edge e, and 
intersect it and all other edges (of a polygonal plane graph) parallel to e. 
The set of these intersections is called an orthogonal cut (oc for short) of G, 
with respect to e.  
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If G is a co-graph then its orthogonal cuts kCCC ,...,, 21  form a 

partition of E(G):   1 2( ) ... , ,k i jE G C C C C C i j= ∪ ∪ ∪ ∩ = ∅ ≠ . 

A subgraph H⊆ G is called isometric, if ( , ) ( , )H Gd u v d u v= , for any 

( , )u v H∈ ; it is convex if any shortest path in G between vertices of H 
belongs to H. The relation co is related to ~ (Djoković [21]) and Θ  (Winkler [22]) 
relations [23,24].  

Two edges e and f of a plane graph G are in relation opposite, e op 
f, if they are opposite edges of an inner face of G. Then e co f holds by the 
assumption that faces are isometric. The relation co is defined in the whole 
graph while op is defined only in faces/rings. Note that John et al. [20]  
implicitly used the “op” relation in defining the Cluj-Ilmenau index CI.  

Relation op will partition the edges set of G into opposite edge strips 
ops, as follows. (i) Any two subsequent edges of an ops are in op relation; 
(ii) Any three subsequent edges of such a strip belong to adjacent faces; 
(iii) In a plane graph, the inner dual of an ops is a path, an open or a closed 
one (however, in 3D networks, the ring/face interchanging will provide ops which 
are no more paths); (iv) The ops is taken as maximum possible, irrespective 
of the starting edge. The choice about the maximum size of face/ring, and 
the face/ring mode counting, will decide the length of the strip.  

Also note that ops are qoc (quasi orthogonal cuts), meaning the 
transitivity relation is, in general, not obeyed. 

The Omega polynomial [25-27] ( )xΩ is defined on the ground of 
opposite edge strips ops 1 2, ,..., kS S S in the graph. Denoting by m, the number 
of ops of cardinality/length s=|S|, then we can write 

( ) s
s

x m xΩ = ⋅∑      (3) 

On ops, another polynomial, called Sadhana Sd(x) is defined [28,29]: 
| ( )|( ) E G s

s
Sd x m x −= ⋅∑     (4) 

The first derivative (in x=1) can be taken as a graph invariant or a topological 
index (e.g., Sd’(1) is the Sadhana index, defined by Khadikar et al. [30]): 

 

(1) ( )
s
m s E G′Ω = ⋅ =∑      (5) 

(1) (| ( ) | )
s

Sd m E G s′ = ⋅ −∑     (6) 

An index, called Cluj-Ilmenau [20], CI(G), was defined on ( )xΩ : 
2( ) [ (1)] [ (1) (1)]{ }CI G ′ ′ ′′= Ω − Ω +Ω      (7) 

In tree graphs, the Omega polynomial simply counts the non-opposite 
edges, being included in the term of exponent s=1.  
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POLYNOMIALS IN THE P-TYPE SURFACE NETWORKS 
 

Omega and Sadhana polynomials are herein calculated at Rmax[6]. 
Formulas for the two infinite networks are listed in Tables 1 and 2, with 
examples at the bottom of these tables.   

 In the discussed network, one can see that the coefficient a(X1) gives 
the number of octagons, by counting the edges not enumerated in the even 
faces. Next, a(X2)/3 provides the number of hexagons while a(X4)/4 counts 
the number of tubular necks (each bearing four anthracene units) joining 
the nodes of the net. In the co-net, the most informative is a(X4)/12, giving 
the total number of the nodes while (a(X4)/12)1/3=k, the co-net parameter. 

 
Table 1. Omega and Sadhana polynomials in the net 

Formulas  
2 3 2 2 4

max
2 3 2 2 4

( , [6]) (72 12( 1)) 24 12 ( 1)

12 ( 5) 24 12 ( 1)

X R k k X k X k k X
k k X k X k k X

Ω = + − + + −

= + + + −
 

' 2(1) 12 (9 1)k kΩ = + ; '' 2(1) 48 (4 3)k kΩ = −  
2 4 3 2( ) 12 (972 216 12 25 11)CI G k k k k k= + + − +  

2 2 2

2 1 3 2 2 4
max

2 12 (9 1) 1 3 12 (9 1) 2 2 12 (9 1) 4

( , [6]) (72 12( 1)) 24 12 ( 1)

12 ( 5) 24 12 ( 1)

e e e

k k k k k k

Sd X R k k X k X k k X

k k X k X k k X

− − −

+ − + − + −

= + − + + −

= + + + −
 

2 3 2 3 2(1) 12 (9 1)(48 48 1) (48 48 1)Sd k k k k e k k′ = + + − = + −  
k Omega polynomial: examples e(G) CI(G) 
1 72X1+24X2 120 14232 
2 336X1+192X2+48X4 912 829872 
3 864X1+648X2+216X4 3024 9137664 
4 1728X1+1536X2+576X4 7104 50449728 
 Sadhana polynomial: examples Sd’(1) 

1 72X119+24X118 11400 
2 336X911+192X910+48X908 524400 
3 864X3023+648X3022+216X3020 5222448 
4 1728X7103+1536X7102+576X7100 27272256 
 

The number of atoms in the cubic domains (k,k,k) of the two lattices can 
be calculated by the formulas given in Table 3; some examples are available. 
 

Table 2. Omega and Sadhana polynomials in co-net 
Formulas  

2 3 2 3 4
max

2 3 2 3 4

( , [6]) (96 12( 1)) 24 12

12 ( 7) 24 12

X R k k X k X k X
k k X k X k X

Ω = + − + +

= + + +
 

' 2(1) 12 (9 7)k kΩ = + ; '' 3(1) 192kΩ =  
2 4 3 2( ) 12 (972 1512 588 25 7)CI G k k k k k= + + − −  

2 2 2

2 1 3 2 3 4
max

2 12 (9 7) 1 3 12 (9 7) 2 3 12 (9 7) 4

( , [6]) (96 12( 1)) 24 12

12 ( 7) 24 12

e e e

k k k k k k

Sd X R k k X k X k X

k k X k X k X

− − −

+ − + − + −

= + − + +

= + + +
 

2 3 2 3 2(1) 12 (9 7)(48 84 1) (48 84 1)Sd k k k k e k k′ = + + − = + −  
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k Omega polynomial: examples e(G) CI(G) 
1 96X1+24X2+12X4 192 36480 
2 432X1+192X2+96X4 1200 1437264 
3 1080X1+648X2+324X4 3672 13474728 
4 2112X1+1536X2+768X4 8256 68140992 
 Sadhana polynomial: examples Sd’(1) 

1 96X191+24X190+12X188 25152 
2 432X1199+192X1198+96X1196 862800 
3 1080X3671+648X3670+324X3668 7531272 
4 2112X8255+1536X8254+768X8252 36450240 
 

Table 3. Number of atoms | ( ) |v V G=  
Net 

2 224 (4 3( 1)) 24 (3 1)kv k k k k= ⋅ + − = ⋅ +  
co-Net 

2 2(144 72( 1)) 72 ( 1)kv k k k k= + − = +  
k 1 2 3 4   

v for net 96 672 2160 4992   
v for co-net 144 864 2592 5760   
 
CONCLUSIONS 
 

In this paper, the design of a hypothetical carbon crystal lattice, embedded 
in the P-type surface, achieved by identifying two opposite open faces of a unit, of 
octahedral symmetry, by the aid of Nano Studio software, was presented. The 
topology of the net and its co-net, thus obtained, was characterized by Omega 
and Sadhana counting polynomials. The ops strips proved to be informative about 
the construction of these infinite carbon nanostructures. 
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DESIGNED BY (P4)kLe OPERATIONS 

 
 
 

MAHBOUBEH SAHELIa, MIRCEA V. DIUDEAb,* 
 
 

ABSTRACT. New cages are designed by repeating P4 map operation and 
finalized by Le operation. The energy of some small non-classical fullerenes, 
tessellated according to above sequences of map operations was evaluated at 
the level of semiempirical method PM3. The topology of the networks is 
described in terms of Omega counting polynomial. Close formulas for this 
polynomial and the Cluj-Ilmenau index derived from it, as well as formulas 
to calculate the net parameters, are given.  

 
Keywords: Counting polynomial, CI index, non-classical fullerenes. 

 
 
 
INTRODUCTION 

 

It is well established that covering/tessellation of fullerenes (nanostructures, 
in general) dictates the stability and reactivity of these molecules [1-3]. Covering 
and its modifications enables understanding of chemical reactions (their 
regioselectivity) occurring in nanostructures, particularly in carbon allotropes. In 
this respect, TOPO GROUP Cluj has developed some software programs [1], 
based on either well-known or original map operations [4-7]. A map M is a 
discretized (closed) surface [1]. 

We recall here the only two operations used in designing the proposed 
tessellation of the cages derived from the Platonic solids: tetrahedron T, 
octahedron Oct, Cube C, dodecahedron Do and icosahedron Ico. 

Polygonal P4 mapping is achieved by adding a new vertex in the center 
of each face and one point on the boundary edges; next, connecting the central 
point with one vertex on each edge, results in quadrilaterals covering [1,6]. 

Leapfrog Le is a composite operation, firstly described by Eberhard 
(1891) [8] and next by Fowler [9] and Diudea [6], that can be achieved as 
follows: add a point in the center of each face and join it with all the corners of 
a face, next truncate this point together with the edges incident in it (Figure 1). 
The original face will appear twisted by π/s, (s being the folding of the original 
face) and surrounded by polygons of 2d0 folding, where d0 is the degree of 
the parent vertices (in a regular graph).  
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P3 Du

 
 

Figure 1. The Leapfrog Le operation on a pentagonal face 
 

If the parent cage is a d0 regular graph, the number of vertices in Le(M) 
is d0 times larger than in the original map M, irrespective of the tessellation 
type. Note that in Le(M) the vertex degree is always 3, as a consequence of 
the involved triangulation P3. In other words, the dual Du of a triangulation 
is a cubic net [2]. It is also true that truncation always provides a trivalent map. 
The leapfrog operation can be used to insulate the parent faces by surrounding 
(most often hexagonal) polygons.  

 
CAGE BUILDING 

 

Cages are built up, starting from the Platonic solids, by repeating the 
P4 operation and finalized by Le operation; the sequence [10] of operations 
can be written as Le(P4(M))k). Due to dual pairs: Tetrahedron-Tetrahedron, 
T-T; Cube-Octahedron, C-Oct and Dodecahedron-Icosahedron, Do-Ico, there 
will be only three series of transformed cages (Figures 2 to 4, non-optimized). 
One can see that the central face/ring (in red) is twice the folding of parent face; 
similarly, the corner face (in blue) is twice the degree d0 of parent vertices. 
These faces are distanced to each other by squares and octagons. The 
counting of faces/rings will be given below by the Ring polynomial [1]. 

 

  
Figure 2. Le(P4(T))2); v=192 ; 3D-vue (left) and orthoscopic vue (right) 

 

  
Figure 3. 3D-vue of Le(P4(C))2); v=192 ; (left) and Le(P4(Oct))2); v=192 ; (right) 
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Figure 4. 3D-vue of Le(P4(Do))2); v=960 ; (left) and Le(P4(Ico))2); v=960 ; (right) 

 

ENERGETIC STABILITY 
 

The calculations reported here were done at PM3 level of theory 
and serve only as arguments for the topological description of the interesting 
cages built up by Le((P4(M))k) sequence of operations. Data, for the smallest 
representatives of this series (Figure 5) are listed in Table 1; for comparison, 
data for C60, are also given. 

 

  
Le(P4(T)) Le(P4(C)) Le(P4(Do)) 

Figure 5. The smallest cages built up by Le((P4(M))k). 
 
 

It can be seen that the proposed cages show a moderate stability (by 
the values of heat of formation per number of atoms HF/N and HOMO-LUMO 
gap HLGAP), lower than that of C60, the reference structure in nanoscience [1].  

Regarding aromaticity, even C60 shows a low value of the geometry-
based HOMA (harmonic oscillator model of aromaticity) index [11-13]; the new 
cages appear as anti-aromatic and this result is in agreement with the massive 
presence in structure of anti-aromatic faces f4 and f8, along with some aromatic 
f6 and f10 (cf. Hückel theory) [14-16].  

 
Table 1. Data for structures built up by (P4)kLe and C60; heat of formation per number  

of atoms HF/N; HOMO-LUMO gap HLGAP; point group symmetry Sym 
 

 Name 
 

N 
atoms 

HF/N  
(kcal/mol) 

HLGAP
(eV) 

Sym. HOMA POAV1 

1 Le(P4(T)) 48 24.386 5.948 Oh -0.871 9.457 
2 Le(P4(C)) 96 20.633 5.917 Oh -0.868 4.831 
3 Le(P4(Do)) 240 19.597 6.047 Ih -0.879 2.067 
4 C60 60 13.514 6.596 Ih 0.169 8.257 
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The last column in Table 1 refers to the strain of cage covering, in 
terms of Haddon’s theory [17-19]. Clearly, the larger cage is the most 
relaxed structure and this is supported by the lowest value of HF/N. 

Computations were done by MOPAC2009 software package [20]. 
Calculations at a higher level of quantum chemistry are in progress in our lab. 
 
OMEGA POLYNOMIAL 

 

In a connected graph G(V,E), with the vertex set V(G) and edge set 
E(G), two edges e = uv and f = xy of G are called codistant e co f  if they 
obey the relation [21]: 

( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + =    (1) 
which is reflexive, that is, e co e holds for any edge e of G, and symmetric, if e co 
f then f co e. In general, relation co is not transitive; if “co” is also transitive, thus 
it is an equivalence relation, then G is called a co-graph and the set of edges 

});({:)( ecofGEfeC ∈=  is called an orthogonal cut oc of G, E(G) being the 
union of disjoint orthogonal cuts: 1 2( ) ... , ,k i jE G C C C C C i j= ∪ ∪ ∪ ∩ =∅ ≠ . 
Klavžar [22] has shown that relation co is a theta Djoković-Winkler relation [23,24]. 

We say that edges e and f of a plane graph G are in relation opposite, 
e op f, if they are opposite edges of an inner face of G. Note that the relation 
co is defined in the whole graph while op is defined only in faces. Using the 
relation op we can partition the edge set of G into opposite edge strips, ops. An 
ops is a quasi-orthogonal cut qoc, since ops is not transitive. 

Let G be a connected graph and 1 2, ,..., kS S S be the ops strips of G. Then 
the ops strips form a partition of E(G). The length of ops is taken as maximum. 
It depends on the size of the maximum fold face/ring Fmax/Rmax considered, so 
that any result on Omega polynomial will have this specification. 
 Denote by m(G,s) the number of ops of length s and define the 
Omega polynomial as [25-33]: 

( , ) ( , ) s
s

G x m G s xΩ = ⋅∑        (2) 
Its first derivative (in x=1) equals the number of edges in the graph: 

( ) ( ) ( )' ,1 ,
s

G m G s s e E GΩ = ⋅ = =∑         (3) 
On Omega polynomial, the Cluj-Ilmenau index [21], CI=CI(G), was defined: 

2( ) [ ( ,1)] [ ( ,1) ( ,1)]{ }CI G G G G′ ′ ′′= Ω − Ω +Ω      (4) 

RESULTS AND DISCUSSION 
 

 Cage parameters 
 

 Since the starting cages of this study are the graphs of Platonic 
solids, let’s present the net parameters of these structures in Table 2, as 
|p0| parameters, p being vertices v (of degree d), edges e and faces f (of various 
folding s). By applying the sequence of operations Le(P4(M))k), the transformed 
maps will show all the vertex degree d=3. Formulas for the value of the other 
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parameters are given in Table 3. Observe, in the dual pair, the face of 
parent becomes the vertex of transform and this interchanging operates 
also on the corresponding parameters: s0f0 becomes d0v0, while the number 
of edges remains unchanged. 

Table 2. Platonic solid graph parameters 
Graph Vertices |v0| Degree d0 Edges |e0| Ring folding s0 Faces  |f0| 

T 4 3 6 3 4 
C 8 3 12 4 6 

Oct 6 4 12 3 8 
Do 20 3 30 5 12 
Ico 12 5 30 3 20 

Table 3.Transforms of the Platonic solid graphs by Le(P4(M))k) 
M Vertices |v0| Edges |e0| Faces  |f0| 
T 12 4k×  18 4k×  6 4 2k× +  

C 24 4k×  36 4k×  12 4 2k× +  

Do 60 4k×  90 4k×  30 4 2k× +  

Formula 0 0| | 4kv s f= ×  0| | 3 4ke e= × ×  
0| | 4 2kf e= × +  

Oct 24 4k×  36 4k×  12 4 2k× +  
Ico 60 4k×  90 4k×  30 4 2k× +  

Formula 0 0| | 4kv d v= ×  
0| | 3 4ke e= × ×  0| | 4 2kf e= × +  

 
Ring polynomial  
 

The ring polynomial for the graphs originating in trivalent Platonics 
is as follows: 

( ) ( )4 6 8
4( (( (T)) ), ) 3 4 8 3 4 6k a aR Le P x x x x= × + + × −   (5) 

( ) ( )4 6 8
4( (( (C)) ), ) 6 4 8 6 4 6k a aR Le P x x x x= × + + × −   (6) 

( ) ( )4 6 8 10
4( (( (Do)) ), ) 15 4 20 15 4 30 12k a aR Le P x x x x x= × + + × − +  (7) 

Generalizing, for the graphs transformed from the trivalent Platonics, 
the formula for ring polynomial is of the form: 

( )
( ) 0

2( 1) 4 6
4 0 0 0 0

21 1 8
0 0 0 0

( (( ( ( : 3))) ), ) 2

2 (2 1) (2 1)

k k

sk k k

R Le P G d x s f x v x

s f e x f x

−

− −

= × + +

× − + − +
 (8) 

 Now, considering the relation between the dual pairs, for the trigonal 
Platonics we have: 

( )
( ) 0

2( 1) 4 6
4 0 0 0 0

21 1 8
0 0 0 0

( (( ( ( : 3))) ), ) 2

2 (2 1) (2 1)

k k

dk k k

R Le P G f x d v x f x

d v e x v x

−

− −

= × + +

× − + − +
 (9) 
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 Omega Polynomial 
 

The Omega polynomial (calculated at Rmax[8]) for the graphs transformed 
from the trivalent Platonics is as follows: 

( ) 22 1 3 2
4( (( (T)) ), ) 3(2 1) 6 4(2 1)

k kk k kLe P x x x
+ − ×Ω = − + + −   (10) 

( ) ( )1 23 2 1 2
4( (( (C)) ), ) 4(2 1) 6 6(2 1) 3

k kk k kLe P x x x
+ +× −Ω = − + + − +  (11) 

1 35 2 1 5 2 2
4( (( (Do)) ), , [8]) 6(2 1) 12(2 1) 15

k k kk k kLe P x R x x x
+ +× − ×Ω = − + − + (12) 

Generalizing, we have: 
0

0

10
0 1

0

21
4 0

1 1 2
6 ( 1) 20 0

0
0

1 ( 1)( (( (G)) ), ) (2 1) 3
2

1 (2 1)
6

3

k

k
k

s
sk k

ss
sk

Le P x f x

s es x x
s

+
+

×−

⎛ ⎞+⎢ ⎥+ − ×⎜ ⎟⎢ ⎥ − ×⎣ ⎦⎝ ⎠

⎛ ⎞+ −Ω = − + +⎜ ⎟
⎝ ⎠

⎛ ⎞+⎢ ⎥+ − +⎜ ⎟⎢ ⎥ ⎡ ⎤⎣ ⎦⎝ ⎠
⎢ ⎥⎢ ⎥

  (13) 

And for CI we have: 
2

4( (( (T)) )) 324 4 6 4 (11 2 1) 18 4k k k k kCI Le P = ⋅ − ⋅ ⋅ − − ⋅  (14) 
2

4( (( (C)) )) 1296 4 12 4 (16 2 1) 36 4k k k k kCI Le P = ⋅ − ⋅ ⋅ − − ⋅  (15) 
2

4( (( (Do)) )) 8100 4 30 4 (25 2 1) 90 4k k k k kCI Le P = ⋅ − ⋅ ⋅ − − ⋅  (16) 
The Omega polynomial, calculated at Rmax=10, in case M=Do, is as follows. 

2

2

2 5( ) 2 3
4

2 10( )

( (( (Do)) ), , [10]) 6( 2) 15

6( 1)

kk k p

k p

Le P x R k p x x

k p x

− +

−

Ω = − − ⋅ + ⋅ +

− − ⋅
 (17) 

2 2 4 2
4( (( (Do)) ),1, [10]) 120 180 120 2 120 90 90k kLe P R p k p k k p′Ω = − + ⋅ − + + (18) 

4 2 4 6
4

2 3 2 2 2 2
4

( (( (Do)) ), [10]) 2250 1800 900 750

900 750 2250 960 2 ( ( (( (Do)) ),1, [10]))

k

k k

CI Le P R k p k p k k
p p k p Le P R

= − + − +
′+ − − ⋅ + Ω

(19) 

 

 Table 4 lists some examples for the formulas derived within this 
paper. Computations were made by Nano Studio software [34]. 
 

Table 4. Examples for the herein derived formulas 
Le((P4(M))k) 
M ; k ; Rmax 

V Omega polynomial CI Ring polynomial 

T; k=3 ; R[8] 768 12x24+27x32 1292544 192x4+8x6+210x8 
C; k=3 ; R[8] 1536 21x32+34x48 5208576 384x^4+8x6+402x8 
Do; k=3;R[8] 3840 30x8+30x24+36x40+42x80 32832000 960x4+20x6+930x8+12x10 
Do; k=3;R[10]  36x40+15x64+42x80 32789760  
T; k=4; R[8] 3072 28x48+51x64 20960256 768x4+8x6+786x8 
C; k=4; R[8] 6144 45x64+66x96 84142080 1536x4+8x6+1554x8 

Do; k=4; R[8] 15360 30x16+30x48+84x80+90x160 527923200 3840x4+20x6+3810x8+12x10 
Do; k=4; R[10]  84x80+15x128+90x160 527754240  
 



OMEGA POLYNOMIAL FOR NANOSTRUCTURES DESIGNED BY (P4)kLe OPERATIONS 
 
 

 231 

CONCLUSIONS 
In this article, new cages designed by Le((P4(M))k) sequence of map 

operations are reported. The energy of some small non-classical fullerenes, 
tessellated according to the above map operations was evaluated at the 
level of semiempirical method PM3; it was shown that these non-classical 
fullerenes have a moderate stability, less than the reference C60 fullerene, 
a result pertinent for a tessellation with massive anti-aromatic faces R4 and 
R8. The topology of the networks was described in terms of Omega counting 
polynomial. Close formulas for this polynomial and the Cluj-Ilmenau index, 
as well as formulas to calculate the net parameters, were given.  
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ABSTRACT. An opposite edge strip ops with respect to a given edge of a 
graph is the smallest subset of edges closed under taking opposite edges 
on faces. The Omega polynomial is a counting polynomial whose k-th coefficient 
is the number m(G,k) of ops containing k-edges. In this paper an exact formula 
for the Omega polynomial of the molecular graph of a new type of graphene 
named CorCor is given. As a consequence, the PI index of this nanostructure 
is computed. 

 
Keywords: Omega polynomial, CorCor 

 
 
INTRODUCTION 

 

Throughout this paper, a graph means a simple connected graph. 
Suppose G is a graph and u, v are vertices of G. The distance d(u,v) is defined 
as the length of a shortest path connecting u and v in G. A graph can be 
described by a connection table, a sequence of numbers, a matrix, a polynomial 
or a derived unique number which is called a topological index. When we 
describe a graph by a polynomial as P(G,x) = Σkm(G,k)xk, then we must find 
algorithms to compute the coefficients m(G,k), for each k, see [1-3]. 

Suppose G is a connected bipartite graph, with the vertex set V(G) 
and edge set E(G). Two edges e = uv and f = xy of G are called co-distant 
(briefly: e co f ) if d(v,x) = d(v,y) + 1 = d(u,x) + 1 = d(u,y). It is far from true 
that the relation "co" is equivalence relation, but it is reflexive and symmetric.  

Let C(e) = { f ∈ E(G) | f co e} denote the set of edges in G, co-
distant to the edge e ∈ E(G). If relation “co” is an equivalence relation then 
G is called a co-graph. Consequently, C(e) is called an orthogonal  cut oc 
of G and E(G) is the union of disjoint orthogonal cuts. If two consecutive 
edges of an edge-cut sequence are opposite, or “topologically parallel” within 
the same face/ring of the covering, such a sequence is called an opposite 
edge strip ops which is a quasi-orthogonal cut qoc strip. This means that 
the transitivity relation of the “co” relation is not necessarily obeyed. Any oc 
strip is an op strip but the reverse is not always true. 

Let m(G,k) denote the multiplicity of a qoc strip of length k. For the 
sake of simplicity, we define m = m(G,k) and e = |E(G)|. A counting polynomial 
can be defined in simple bipartite graphs as Ω(G,x) = Σemxk, named Omega 
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polynomial of G. This polynomial was introduced by one of the present 
authors (MVD) [4]. Recently, some researchers computed the Omega and 
related polynomials for some types of nanostructures [5-10].  

In this paper, we continue our earlier works on the problem of 
computing Omega polynomials of nanostructures. We focus on a new type of 
nanostructures named CorCor, a domain of the graphene – a 2-dimensional 
carbon network, consisting of a single layer of carbon atoms, and compute 
its Omega polynomial, Figure 1. Our notation is standard and mainly taken 
from the standard books of graph theory.  

 
 Main Results and Discussion 

 

 In this section, the Omega polynomial of G[n] = CorCor[n] with n layers 
(Figure 1) is computed. At first, we notice that the molecular graph of G[n] has 
exactly 42n2 – 24n + 6 vertices and 63n2 – 45n + 12 edges. The molecular 
graph G[n] is constructed from 6n −3 rows of hexagons. For example, the 
graph G[3] has exactly 15 rows of hexagons and the number of hexagons 
in each row is according to the following sequence: 

 

2, 5, 9, 10, 11, 12, 12, 11, 12, 12, 11, 10, 9, 5, 2 
 

 The (3n – 1)th row of G[n] is called the central row of G[n]. This row 

has exactly 3
3
n2n43)

3
nn(2

3
n32 −⎥⎥

⎤
⎢⎢
⎡+=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡−+⎥⎥

⎤
⎢⎢
⎡  hexagons, where for a 

real number x, ⎡ ⎤x  denotes the smallest integer greater or equal to x. The 
central hexagon of G[n] is surrounded by six hexagons. If we replace each 
hexagon by a vertex and connect such vertices according to the adjacency 
of hexagons, then we will find a new hexagon containing the central 
hexagon of G[n]. Next consider the adjacency relationship between the 
hexagons of the second layer of G[n] and construct a new hexagon containing 
the last one and so on, see Figure 1. The hexagons constructed from this 
algorithm are called the big hexagons. By our algorithm, the hexagons of 
G[n] are partitioned into the following two classes of hexagons: 

a) The hexagons crossing the edges of big hexagons, i.e. those 
depicted by thick line.  

b) The hexagons outside the big hexagon. 

 
Figure 1. The Molecular Graph of CorCor[3]. 
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One can see that the number of rows inside and outside big 

hexagons are equal to 4
3
n2n44)

3
nn(4

3
n6 −⎥⎥

⎤
⎢⎢
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⎤
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⎤
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⎥⎥
⎤

⎢⎢
⎡−=−⎥⎥

⎤
⎢⎢
⎡+−−

3
n2n2)4

3
n2n4(4n6 , respectively. From Figure 1, one can see 

that the molecular graph of CorCor[n] can be partitioned into six equal parts 
with the same number of hexagons. If we consider one half of this graph 
then three cases of these six parts must be considered. Define three 
matrices  and   as follows: 

• A is an ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
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⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡−

3
22

3
nnnn  matrix with 0 & 1 entries. 

The entries corresponding to the hexagons of CorCor[n] are 
equal to 1, and other entries are zero, see Figure 2. As an example, 
the matrix A6 is as follows: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
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111111111111
111111111000
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• Suppose A = [aij], A′ = [bij] is an ⎟⎟
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defined by 

( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥⎥
⎤

⎢⎢
⎡+−>+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡−+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−⎥⎥

⎤
⎢⎢
⎡−

⎥⎥
⎤

⎢⎢
⎡+−≤+

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎥⎥

⎤
⎢⎢
⎡−

=

3
12

3
121

3

3
12

11
3

nnjinnjijnn
a

nnji
jijnn

a

ijb

 

A″ = [cij] is an 
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It is easy to see that the number of hexagons in the central row of 

G[n] is 3
3

243
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summation of all entries in the ith row of the matrices A′ and A″, respectively. 
Then 
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0
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A'6 Matrix
A''6 Matrix

 
Figure 2. Construction of the Matrices A6, 6A′  and 6A ′′  

 
and so,  
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Thus for computing the omega polynomial of G[n], it is enough to 
compute iS ′  and .iS ′′  By a simple calculations, one can see that Ω(G[1]) = 6x3 
+ 3x4 and Ω(G[2]) = 6x3 + 6x6 + 15x8. So, we can assume that n ≥ 3. Our main 
proof consider three cases that n ≡ 0 (mod 3), n ≡ 1 (mod 3) and n ≡ 2 (mod 3). 

We first assume that n ≡ 0 (mod 3). In this case the number of rows 
in the big hexagons is 7n/3 – 2. By definition of An, if 1 ≤ j ≤ 4n/3 – 2 then 
we have ⎡ ⎤.2/jS j =′  If 4n/3 – 1 ≤ j ≤ 7n/3 – 2 then we can define 

knj +−= 23/4 , where 1 ≤ k ≤ n. Thus, 
 ),22(3/2 −−=′ knSi  where k ≡ 1 or 2 (mod 3), 
 ),12(3/2 −−=′ knSi  where k ≡ 0 (mod 3). 

To compute ,jS ′′  we consider four cases that 1 ≤ j ≤ n/3 – 1, j = n/3, 
j = n/3 + 1 and n/3 + 2 ≤ j ≤ 7n/3 – 2. In the first case ,2 jS j =′′  and for the 
second and third cases we have .3/2njS =′′  For the last case, we assume 

that j = n/3 + k + 1, 1 ≤ k ≤ 2n – 3. Then ⎡ ⎤ ⎡ ⎤.3/3/23/3/ knknnjS −=−−=′′  
To compute the omega polynomial, we define the following polynomials: 

1) 
 

⎡ ⎤ ,13/
1

2/3/713
1 ∑ −

=
++−=ε n

j
jnjx  
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2)  ⎡ ⎤ ⎡ ⎤ ,6/)3(3/1016/3/101
2
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Therefore, ⎡ ⎤( )⎡ ⎤∑ +−
=

+−++′′+′+
=ε+ε+ε+ε 3/22

1 .3/221
4321 nn

j
njnSSx jj   

To simplify these quantities, two cases that n is odd or even are 
considered. If n is even then 

( )
7

3 6 1 4 52

7
14

2 1 1 3 4 5 2 1 5 63

2
( , ) [6/ (1 )]

1 12 ( 2 2 )
2 2 3

n

n

x x x x x x
G x x

nx x x x x x x x x x x− − − −

⎛ ⎞
+ + + + −⎜ ⎟

⎜ ⎟Ω = − ×
⎛ ⎞⎜ ⎟+ + + + + + − − + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

if n is odd, then 
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Using a similar argument as above, if n ≡ 1 (mod 3) then for even n,  
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and for odd n, 
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Finally, if n ≡ 2 (mod 3) then for even n, 
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and for odd n, 
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It is now possible to simplify our calculations as follows: 
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Since G[n] is a partial cube by a result of Klavzar [11],  
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We now apply above calculations to compute the PI index of G[n]. We have: 
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OMEGA POLYNOMIAL IN CRYSTAL-LIKE NETWORKS 
 
 

MAHBOUBEH SAHELIa, MODJTABA GHORBANIa, 
MONICA L. POPb, MIRCEA V. DIUDEAb*  

 
 

ABSTRACT. Omega polynomial ( , )G xΩ , defined by Diudea in Carpath. J. 
Math., 2006, 22, 43-47, counts topologically parallel edges eventually forming 
a strip of adjacent faces/rings, in a graph G=G(V,E). The first and second 
derivatives, in x=1, of Omega polynomial enables the evaluation of the 
Cluj-Ilmenau CI index. Analytical close formulas for the calculation of this 
polynomial in two hypothetical crystal-like lattices are derived. 
 
 Keywords: Omega polynomial, crystal networks 

 
 
INTRODUCTION 

 

Design of polyhedral units, forming crystal-like lattices, is of interest in 
crystallography as many metallic oxides or more complex salts have found 
application in chemical catalysis. Various applied mathematical studies have 
been performed, in an effort to give new, more appropriate characterization of 
the world of crystals. Recent articles in crystallography promoted the idea 
of topological description and classification of crystal structures.1-8 They 
present data on real but also hypothetical lattices designed by computer.  

The geometry and polyhedral tiling is function of the experimental 
conditions and can be designed by dedicated software programs. Such a 
program, called Cage Versatile CV-NET, was developed at TOPO Group Cluj, 
Romania. It works by net operations, as a theoretical support. 

Three basic net/map operations Leapfrog Le, Quadrupling Q and Capra 
Ca, associated or not with the more simple Medial Med operation, are most often 
used to transform small polyhedral objects (basically, the Platonic solids) into more 
complex units. These transforms preserve the symmetry of the parent net.9-11 

The article is devoted to the study of two new double periodic crystal-
like network, by using a topological description in terms of the Omega counting 
polynomial. 
 
OMEGA POLYNOMIAL 

 

A counting polynomial is a representation of a graph G(V,E), with 
the exponent k showing the extent of partitions p(G), )()( GPGp =∪  of a 
graph property P(G) while the coefficient ( )p k  are related to the number of 
partitions of extent k. 
                                                 
a Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, 

Tehran, 16785 – 136, I. R. Iran; mghorbani@srttu.edu 
b Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj, Romania, 
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( ) ( ) k
k

P x p k x= ⋅∑        (1) 
Let G be a connected graph, with the vertex set V(G) and edge set 

E(G). Two edges e=(u,v) and  f=(x,y)  of G are called codistant (briefly: e co f ) 
if the notation can be selected such that12  

( , ) ( , ) 1 ( , ) 1 ( , )d v x d v y d u x d u y= + = + =      (2) 
where d is the usual shortest-path distance function. The above relation co 
is reflexive (e co e) and symmetric (e co f) for any edge e of G but in 
general is not transitive. 
 A graph is called a co-graph if the relation co is also transitive and 
thus an equivalence relation. 
 Let });({:)( ecofGEfeC ∈=  be the set of edges in G that are 
codistant to )(GEe∈ . The set C(e) can be obtained by an orthogonal edge-
cutting procedure: take a straight line segment, orthogonal to the edge e, 
and intersect it and all other edges (of a polygonal plane graph) parallel to e. 
The set of these intersections is called an orthogonal cut (oc for short) of G, 
with respect to e.  

If G is a co-graph then its orthogonal cuts kCCC ,...,, 21  form a partition 
of E(G):   1 2( ) ... , ,k i jE G C C C C C i j= ∪ ∪ ∪ ∩ = ∅ ≠ . 

A subgraph H⊆ G is called isometric, if ( , ) ( , )H Gd u v d u v= , for any 
( , )u v H∈ ; it is convex if any shortest path in G between vertices of H belongs 
to H. The relation co is related to ~ (Djoković13) and Θ  (Winkler14) relations.15  

Two edges e and f of a plane graph G are in relation opposite, e op 
f, if they are opposite edges of an inner face of G. Then e co f holds by the 
assumption that faces are isometric. The relation co is defined in the whole 
graph while op is defined only in faces/rings.  

Relation op will partition the edges set of G into opposite edge strips 
ops, as follows. (i) Any two subsequent edges of an ops are in op relation; (ii) 
Any three subsequent edges of such a strip belong to adjacent faces; (iii) In a 
plane graph, the inner dual of an ops is a path, an open or a closed one 
(however, in 3D networks, the ring/face interchanging will provide ops which 
are no more paths); (iv) The ops is taken as maximum possible, irrespective of 
the starting edge. The choice about the maximum size of face/ring, and the 
face/ring mode counting, will decide the length of the strip.  

Also note that ops are qoc (quasi orthogonal cuts), meaning the 
transitivity relation is, in general, not obeyed. 

The Omega polynomial16,17 ( )xΩ is defined on the ground of opposite 
edge strips ops 1 2, ,..., kS S S in the graph. Denoting by m, the number of ops of 
cardinality/length s=|S|, then we can write 

( ) s
s

x m xΩ = ⋅∑      (3) 
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The first derivative (in x=1) can be taken as a graph invariant or a 
topological index: 

(1) ( )
s
m s E G′Ω = ⋅ =∑      (4) 

An index, called Cluj-Ilmenau,12 CI(G), was defined on ( )xΩ : 
2( ) [ (1)] [ (1) (1)]{ }CI G ′ ′ ′′= Ω − Ω +Ω              (5) 

In tree graphs, the Omega polynomial simply counts the non-
opposite edges, being included in the term of exponent s=1.  

 
 Main Results 

 

 The nets herein discussed were built up by combinations of map 
operations. 

 

Net A. The unit of this net is an isomer of cuboctahedron (which is the medial of 
Cube and Octahedron). The net is constructed by identifying some squares 
so that the net appears as “translated” on the Z-axis, each time one row 
(Figure 1) 
 

  
111a 111b 

 

  

333a 333b 
Figure 1. Net A; unit 111 (top) and 333 (bottom) 

 
The computed data for the Omega polynomial of this net were rationalized 
as in the formulas presented below and Table 1. 
 

 
)23)(1(4)1(3)2(22231 )1()4372()12(4),( +−++ −+++−+++−=Ω aaaaaa xaaxaxxaaaxaaxG  (6) 

aaaGGE 21321)1,(|)(| 23 −+=Ω′=      (7) 
8082725291389441)( 23456 +−−−++= aaaaaaGCI   (8) 

621 284),(1 xxxxGa ++=Ω⇒=
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Table 1. Omega polynomial and CI index of the Net A: Examples 
a Omega Polynomial CI 
1 621 284 xxx ++ 916
2 32181621 1224624 xxxxx ++++ 44264
3 88363021 23312260 xxxxx ++++ 437060
4 168604821 344248112 xxxxx ++++ 2274544
5 272907021 455436180 xxxxx ++++ 8280740
6 4001269621 566698264 xxxxx ++++ 23966456
7 55216812621 6771046364 xxxxx ++++ 59104804
8 72821616021 7881492480 xxxxx ++++ 129524240

 
Net B. The unit of this net is as for the case A but the edges sharing triangles were 
deleted. Moreover, the net is constructed not translated (Figure 2). Note, these 
networks and only double periodic, as can be seen from bottom rows of figures. 

The computed data for the Omega polynomial of this net were 
rationalized as in the formulas presented below and Table 2. 

 

           86 22),(1 xxxGa +=Ω⇒=  
( ) 316)12(2

1

1

)2(410 124),( aaa
a

i

ia xxxxG ++=Ω +
−

=

−+∑    (9) 

)16(4424)1,(|)(| 223 +=+=Ω′= aaaaGGE    (10) 
)1(8|)(| 2 += aaGV      (11) 

aaaaaaG
3
8

3
208

3
64

3
64256)1,( 23456 ++−++=Ω ′′   (12) 

6 5 4 3 2

5 4 3 2

512 16 32 8( ) 320 16
3 3 3 3

64 2 4 18 40 2
3 3 3 3

CI G a a a a a a

a a a a a a

= + − − + − =

⎛ ⎞+ − − − −⎜ ⎟⎝ ⎠

  (13) 

 

Table 2. Omega polynomial and CI index of the Net B: Examples 
a Omega Polynomial CI 
1 86 22 xx +  584 

2 1282010 124 xxx ++  25680 

3 432422814 1244 xxxx +++  273784 

4 102472543618 12444 xxxxx ++++  1482912 

5 200011088664422 124444 xxxxxx +++++  5527720 

6 3456156130104785226 1244444 xxxxxxx ++++++  16246256 
7 5488210180150120906030 12444444 xxxxxxxx +++++++  40497240 
8 81922722382041701361026834 124444444 xxxxxxxxx ++++++++  89447744 
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111a 111b 

  
222a 222b 

Figure 2. Net B; unit 111 (top) and 222 (bottom) 
 
CONCLUSIONS  

 

Omega polynomial can be used in topological description of polyhedral 
crystal networks.  
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CLUJ CJ POLYNOMIAL AND INDICES IN A DENDRITIC 
MOLECULAR GRAPH 

 
 

MIRCEA V. DIUDEAa, NASTARAN DOROSTIb, ALI IRANMANESHb,*  
 
 

ABSTRACT. The Cluj polynomials CJe(x) and indices are calculable by either 
summation CJeS(x) or multiplication CJeP(x) of the sets of non-equidistant 
vertices related to the endpoints of any edge e=(u,v) in the graph. A third 
polynomial, the (vertex) PIv(x), is related to CJeS. In this paper, a procedure 
based on orthogonal cuts is used to derive the three above polynomials and 
indices in the molecular graph of a dendrimer.  
 

Keywords: dendrimer, molecular graph, Cluj polynomial, Cluj index 
 
 

INTRODUCTION 
 

Cluj matrices and indices have been proposed by Diudea twelve years 
ago. A Cluj fragment [1-4] pjiCJ ,,  collects vertices v lying closer to i than to j, 
the endpoints of a path p(i,j). Such a fragment collects the vertex proximities of 
i against any vertex j, joined by the path p, with the distances measured in 
the subgraph D(G-p): 

{ }),(),();( )()(,, vjDviDGVvvCJ pGpGpji −− <∈=   (1) 

In trees, pjiCJ ,,  denotes sets of (connected) vertices v joined with j 
by paths p going through i. The path p(i,j) is characterized by a single 
endpoint, which is sufficient to calculate the unsymmetric matrix UCJ. 

In graphs containing rings, the choice of the appropriate path is quite 
difficult, thus that path which provides the fragment of maximum cardinality 
is considered: 
  pj,i,

p
CJmax=

ji,
[UCJ]               (2) 

When path p belongs to the set of distances DI(G), the suffix DI is 
added to the name of matrix, as in UCJDI. When path p belongs to the set 
of detours DE(G), the suffix is DE. When the matrix symbol is not followed by a 
suffix, it is implicitly DI. The Cluj matrices are defined in any graph and, except 
for some symmetric graphs, are unsymmetric and can be symmetrized by 
the Hadamard multiplication with their transposes5 
 

SMp = UM • (UM)T     (3) 
                                                 
a Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 

400028 Cluj, Romania 
b Department of Mathematics, Tarbiat Modares University. 14115-137 Tehran, IRAN,  
* iranmanesh@modares.ac.ir 
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If the matrices calculated on edges (i.e., on adjacent vertex pairs) 
are required, the matrices calculated on paths must be multiplied by the 
adjacency matrix A (which has the non-diagonal entries of 1 if the vertices 
are joined by an edge and, otherwise, zero) 

SMe = SMp • A      (4) 
The basic properties and applications of the above matrices and 

derived descriptors have been presented elsewhere [6-11]. Notice that the 
Cluj indices, previously used in correlating studies published by TOPO GROUP 
Cluj, were calculated on the symmetric matrices, thus involving a multiplicative 
operation. Also, the symbol CJ (Cluj) is used here for the previously denoted 
CF (Cluj fragmental) matrices and indices.  

Our interest is here related to the unsymmetric matrix defined on 
distances and calculated on edges UCJe  

UCJe = UCJp • A     (5) 
which provides the coefficients of the Cluj polynomials [12,13] (see below).  
 
CLUJ POLYNOMIALS 

 

 A counting polynomial can be written in a general form as: 
( ) ( ) k

kP x m k x= ⋅∑       (6) 
 It counts a graphical property, partitioned in m sets of extent k, of which 
re-composition will return the global property. As anticipated in introduction, 
the Cluj polynomials count the vertex proximity of the both ends of an edge 
e=(u,v) in G; there are Cluj-edge polynomials, marked by a subscript e (edge), 
to be distinguished to the Cluj-path polynomials (marked by a subscript p), 
defined on the concept of distance DI or detour DE in the graph [2,5].  

The coefficients m(k) of eq. (6) can be calculated from the entries of 
unsymmetric Cluj matrices, as provided by the TOPOCLUJ software program 
[14] or other simple routines. In bipartite graphs, a simpler procedure enabling 
the estimation of polynomial coefficients is based on orthogonal edge-cutting. 
The theoretical background of the edge-cutting procedure is as follows. 

A graph G is a partial cube if it is embeddable in the n-cube nQ , which 
is the regular graph whose vertices are all binary strings of length n, two 
strings being adjacent if they differ in exactly one position.15 The distance 
function in the n-cube is the Hamming distance. A hypercube can also be 
expressed as the Cartesian product: 21KWQ n

in == .  
For any edge e=(u,v) of a connected graph G let nuv denote the set 

of vertices lying closer to u than to v: { }( ) | ( , ) ( , )uvn w V G d w u d w v= ∈ < . 

It follows that { }( ) | ( , ) ( , ) 1uvn w V G d w v d w u= ∈ = + . The sets (and 
subgraphs) induced by these vertices, nuv and nvu, are called semicubes of 
G; the semicubes are called opposite semicubes and are disjoint [16,17]. 
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A graph G is bipartite if and only if, for any edge of G, the opposite 
semicubes define a partition of G: ( )uv vun n v V G+ = = . These semicubes 
are just the vertex proximities (see above) of (the endpoints of) edge 
e=(u,v), which the Cluj polynomials count. 
 In bipartite graphs, the opposite semicubes can be estimated by an 
orthogonal edge-cutting procedure, as shown in Figure 1. The set of edges 
intersected by an orthogonal line is called an (orthogonal) cut Cn and 
consists of (topologically) parallel edges; the associate number counts the 
intersections with the orthogonal line. In the right hand part of Figure 1, there 
are three numbers in the front of brackets, with the meaning: (i) symmetry; 
(ii) occurrence (in the whole structure) and (iii) n, the number of edges cut-off 
by an ortogonal line. The product of the above three numbers will give the 
coefficients of the Cluj polynomials. The exponents in each bracket represent 
the number of points lying to the left and to the right of the corresponding 
ortogonal line segment. A similar procedure has been used by Gutman and 
Klavžar to calculate the Szeged index of polyhex graphs [18]. 
 

 
 
Figure 1. Edge-cutting procedure in the calculus of CJ polynomials of a bipartite graph 
 

Three different counting polynomials can be defined on the vertex 
proximities/semicubes in bipartite graphs, which differ by the operation used in 
re-composing the edge contributions: 

(i) Summation, and the polynomial is called Cluj-Sum (Diudea et al. 
[12,13,19,20]) and symbolized CJeS: 

( )( ) n v ne e
e eCJ S x x x −= +∑     (7) 

 (ii) Pair-wise summation, with the polynomial called (vertex) Padmakar-
Ivan [21,22] (Ashrafi [23-26]) and symbolized PIv: 

( )( ) n v ne e
v ePI x x + −= ∑      (8) 

 (iii) Product, while the polynomial is called Cluj-Prod and symbolized CJeP: 
  ( )( ) n v ne e

e eCJ P x x −= ∑      (9) 

  CJe S(x) = 3·2·3(x5+x121)+ 3·2·6(x16+x110)+ 
                     3·2·8(x31+x95)+ 3·2·8(x47+x79)+ 
                     3·1·8(x63+x63) 
   CJe S’(1) = 21924; CJe S’’(1) = 1762320 

 
        PIv(x) = 3·2·3(x5+121)+ 3·2·6(x16+110)+ 
                     3·2·8(x31+95)+ 3·2·8(x47+79)+ 
                     3·1·8(x63+63) 
      PIv’(1) = 21924; PIv’’(1) = 2740500 

 
   CJe P(x) = 3·2·3(x5·121)+ 3·2·6(x16·110)+ 
                     3·2·8(x31·95)+ 3·2·8(x47·79)+ 
                     3·1·8(x63·63) 
  CJe P’(1) = 489090 
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Because the opposite semicubes define a partition of vertices in a 
bipartite graph, it is easily to identify the two semicubes in the above formulas: 
nuv=ne and nvu=v-ne, or vice-versa.  

The first derivative (in x=1) of a (graph) counting polynomial provides 
single numers, often called topological indices.  

It is not difficult to see that the first derivative (in x=1) of the first two 
polynomials gives one and the same value, however, their second derivative 
is different (see Figure 1) and the following relations hold in any graph [20]: 

(1) (1)e vCJ S PI ′′ = ; (1) (1)e vCJ S PI ′′′′ ≠    (10) 
The number of terms, CJe(1)=2e, is twice the number given by PIv(1) 

because, in the last case, the endpoint contributions are summed together 
for any edge in G (see (7) and (8)).  

Clearly, the third polynomial is more different; notice that Cluj-Prod 
CJeP(x) is precisely the (vertex) Szeged polynomial Szv(x), defined by 
Ashrafi et al. [24-26] This comes out from the relations between the basic 
Cluj (Diudea [2,5]) and Szeged (Gutman [5,27]) indices:  

 (1) ( ) ( ) (1)e e vCJ P CJ DI G Sz G Sz ′′ = = =     (11) 
Recall the definition of the vertex PIv index: 

, , ,( ) (1)v v u v v u u v
e uv e uv

PI G PI n n V E m
= =

′= = + = ⋅ −∑ ∑   (12) 

where nu,v, nv,u count the non-equidistant vertices vs. the endpoints of 
e=(u,v) while m(u,v) is the number of vertices lying at equal distance from 
the vertices u and v. All the discussed polynomials and indices do not count 
the equidistant vertices, an idea introduced in Chemical Graph Theory by 
Gutman. In bipartite graphs, since there are no equidistant vertices vs any 
edge, the last term in (12) will disappear. The value of PIv(G) is thus maximal 
in bipartite graphs, among all graphs on the same number of vertices; the 
result of (12) can be used as a criterion for checking the “bipatity” of a graph. 
 
APPLICATION 

 

The three above polynomials and their indices are calculated on a 
dendritic molecular graph, a (bipartite) periodic structure with the repeat 
unit v0=8 atoms, taken here both as the root and branching nodes in the 
design of the dendron (Figure 2, see also refs. [27-30]). 

Formulas collect the contributions of the Root, the internal (Int) and 
external (Ext) parts of the structure but close formulas to calculate first 
derivative (in x=1) of polynomials were derived for the whole molecular graph. 
Formulas for calculating the number of vertices, in the whole wedge or in local 
ones, and the number of edges are also given. Examples, at the bottom of 
Tables 1 and 2, will enable the reader to verify the presented formulas.  
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Figure 2. A dendritic wedge, of generation r=4; v=248; e=278. 

Table 1. Formulas for counting CJeS and PIv polynomials in a dendritic D wedge graph 
( , ) ( ) ( ) ( )e e e eCJ S D x CJ S Root CJ S Int CJ S Ext= + +

1 1 2 2 5 5 /2 1 /2 1( ) ( ) ( ) 1 2 ( ) 2 2 ( )v v v v v
eCJ S Root x x x x x x x x− − − − += + + + + ⋅ ⋅ + + ⋅ ⋅ +  

1
3 ( 3) 5 ( 5)( 1) 1 1

1

2 ( 2) 1 ( 1)( 1) 1 1 1 1 1 1

( ) {2 2 2 [ ] 2 2 2 [ ]

2 2 1 {[ ] [ ] [ ]}}

r
v v v v v vr d r dd d d d

e
d

v v v v v v v v vr d d d d d d d

CJ S Int x x x x

x x x x x x

−
+ − + − − −− − + + +

=

− − − − − − −− + + + + + + +

= ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ + +

⋅ ⋅ ⋅ + + + + +

∑  

2 ( 2)3 3 0 0

1 ( 1)0 0 0 0

( ) 2 3 2 ( ) 2 1 1 {[ ]

[ ] [ ]}

v v vr v r
e

v v v v v v

CJ S Ext x x x x

x x x x

− − −−

− − − −

= ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ + +

+ + +
 

1
( 1)

1
(1) ( ) (8 18 2 9 2 ) (18 2 10)

r
r d r r

e e
d

CJ S CJ S D v v v e
−

− +

=

′ = = ⋅ + ⋅ + ⋅ = ⋅ ⋅ − = ⋅∑
3 1( , ) 2 (2 1)rv v D r += = − ; 32 (2 1); 1,2,..d

dv d= − = ( ) 18 2 10re D = ⋅ −  
 
 

Example:  
v(r=3)=120; e(r=3)=134; v(r=4)=248; e(r=4)=278 

3 12 (2 1)( ) (18 2 10) ; (1)
rv r

v vPI x e x x PI v e
+ − ′= ⋅ = ⋅ − ⋅ = ⋅  

 

Example:  
CJeS(x,r=3)=(1x1+1x119)+(1x2+1x118)+(48x3+48x117)+(2x5+2x115)+(8x6+8x114)+(8x7+8x113)
+(8x8+8x112)+(16x11+16x109)+(8x19+8x101)+(4x22+4x98)+(4x23+4x97)+(4x24+4x96)+(8x27+8x93) 
+(4x51+4x69)+(2x54+2x66)+ (2x55+2x65)+(2x56+2x64) + (4x59+4x61)  
CJeS’(1,r=3)=16080; CJeS’(1,r=4)=68944. 

Table 2. Formulas for counting CJeP polynomial in a dendritic D wedge graph 
( , ) ( ) ( ) ( )e e e eCJ P D x CJ P Root CJ P Int CJ P Ext= + +

( )( )( ) n v ne e
e eCJ P G x −= ∑  

1( 1) 2( 2) 5( 5) ( /2 1)( /2 1)( ) 1 2 [ ] 2 2 [ ]v v v v v
eCJ P Root x x x x− − − − += + + ⋅ ⋅ + ⋅ ⋅

1
( 3)( ( 3)) ( 5)( ( 5))( 1) 1 1

1

( 2)( ( 2)) ( 1)( ( 1)) ( )( )( 1) 1 1 1 1 1 1

( ) {2 2 2 [ ] 2 2 2 [ ]

2 2 1 {[ ] [ ] [ ]}}

r
v v v v v vr d r dd d d d

e
d

v v v v v v v v vr d d d d d d d

CJ P Int x x

x x x

−
+ − + − − −− − + + +

=

− − − − − − −− + + + + + + +

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ +

⋅ ⋅ ⋅ + +

∑  

( 2)( ( 2))3( 3) 0 0

( 1)( ( 1)) ( )0 0 0 0

( ) 2 3 2 ( ) 2 1 1 {[ ]
[ ] [ ]}

v v vr v r
e

v v v v v v

CJ P Ext x x
x x

− − −−

− − − −

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ +

+
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2(1) ( ) 3626 2 256 2 3872 4
1792 4 1120 2 99

r r r
e e

r r

CJ P CJ P D
r r

′ = = ⋅ + ⋅ − ⋅ +

+ ⋅ ⋅ + ⋅ ⋅ +

 

Example:  
CJeP(x,r=3)=x119+x236+48x351+2x575+8x684+8x791+8x896+16x1199+8x1919+4x2156+4x2231+4x2304

+ 8x2511+4x3519+2x3564+2x3575+2x3584+4x3599 

CJeP’(1,r=3)=168627; CJeP’(1,r=4)=1039107. 
 

CONCLUSIONS 
 

Two Cluj polynomials CJe(x) and indices, defined on vertex proximities/ 
semicubes, are calculable by either summation CJeS(x) or multiplication 
CJeP(x) of the sets of non-equidistant vertices related to the endpoints of 
any edge e=(u,v) in the graph. A third polynomial, the (vertex) PIv(x), was 
shown to be related to the CJeS. A procedure based on orthogonal cuts, 
enabled us to derive the three above polynomials and indices in the molecular 
graph of a dendrimer. The procedure is applicable only in bipartite graphs.  
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THE WIENER INDEX OF CARBON NANOJUNCTIONS  
 
 

ALI REZA ASHRAFIa, ASEFEH KARBASIOUNb, MIRCEA V. DIUDEAc 
 
 

ABSTRACT. Let G be a molecular graph. The Wiener index of G is defined 
as the sum of all distances between vertices of G. In this paper a method, 
which is useful to calculate the Wiener index of nanojunctions, is presented. 
We apply our method on the molecular graph of a carbon nanojunction 
Le1,1(Op(Q20(T)))_TU(3,3) and its Wiener index is given. 
 
Keywords: Nanojunction, molecular graph, Wiener index. 

 
 
 
INTRODUCTION 
 

 A molecular graph is a simple graph such that its vertices correspond 
to the atoms and the edges to the bonds. Note that hydrogen atoms are often 
omitted. By IUPAC terminology, a topological index is a numerical value 
associated with a chemical constitution purporting for correlation of chemical 
structure with various physical properties, chemical reactivity or biological 
activity [1−3]. This concept was first proposed by Hosoya [4] for 
characterizing the topological nature of a graph. Such graph invariants are 
usually related to the distance function d(-,-). To explain, we assume that G 
is a molecular graph with vertex set V(G) and edge set E(G). The mapping 
d(-,-): V(G) × V(G) ⎯→ V(G) in which d(x,y) is the length of a minimum path 
connecting x and y, will be called “distance function” on G.   

Recently, this part of Mathematical Chemistry was named "Metric 
Graph Theory". The first topological index of this type was proposed in 1947 
by the chemist Harold Wiener [5]. It is defined as the sum of all distances 
between vertices of the graph under consideration. Suppose G is a graph 
with the vertex set V(G) = {v1,v2, …, vn}. The distance matrix of G is defined 
as D(G) = [dij], where dij = d(vi,vj). It is easy to see that the Wiener index of 
G is the half sum of entries of this matrix.  

Recently many researchers were interested in the problem of 
computing topological indices of nanostructures. There are more than 200 
published papers after 2000, but a few of them devoted to the Wiener index. 
On the other hand, there are not many methods to compute the Wiener index 
of molecular graphs and most of them are related to bipartite or planar graphs. 
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Since the molecular graphs of nanostructures are usually non-planar and 
most of them are not bipartite, every author applied a method designed for 
his/her problem.  

In some research papers [7−11] one of present authors (MVD) applied 
some computer programs to compute the Wiener index of nanotubes and 
nanotori. In this method, we must decompose the problem in some cases and 
then prove that the Wiener index in each case is a polynomial of a given order. 
Finally, we compute the Wiener index in some case and find the coefficients 
of our polynomials. There is also a numerical method given in [12] for estimating 
the Wiener index. 

In some papers [13−19], the authors presented a matrix method for 
computing Wiener index of nanotubes and nanotori. This method is appropriate 
for high symmetry objects and it is not general. The most general methods for 
computing Wiener index of nanostructures are those given in [20−22]. These 
methods are useful for graphs constructible by a few numbers of subgraphs. 
The aim of this paper is to apply the new method on the carbon nanojunction 
Le1.1(Op(Q2.0(T)))_ TU(3,3) and to compute its Wiener index. 

 
RESULT AND DISCUSSION 
 

Throughout this paper G[n] denotes the molecular graph of carbon 
nano- junction that show by Le1.1(Op(Q2.0(T)))_TU(3,3), Figure 1. At first, we 
introduce two notions. Suppose G and H are graphs such that V(H) ⊆  V(G) 
and E(H)⊆E(G). Then we call H to be a subgraph of G. H is called isometric if 
for each vertex x, y∈V(H), dH(x,y) = dG(x,y). In Figures 2−5, four isometric 
subgraphs of G[n] are depicted. Define n to be the number of rows in each 
arm tube (Figure 1, n=3). Then by a simple calculation, one can show that 
|V(G)| = 48(n + 1). 

To compute the Wiener index of Le1.1(Op(Q2.0(T)))−TU(3,3), we first 
calculate the Wiener matrices of these subgraphs. Suppose S1, .., S4 are 
defined as follows: 
 

• S1 is the summation of distances between the vertices of core, Figure 2. 
• S2 is the summation of distances between vertices of a tube and the 

vertices of the core, Figure 3. 
• S3 is the summation of distances between two vertices of a tube, 

Figure 4. 
• S4 is the summation of distances between vertices of two different 

arm tubes, Figure 5. 
 

We notice that the core has exactly 48 vertices and so its distance 
matrix is 4848× . By using HyperChem [23] and TopoCluj [24], one can see 
that S1 = 5664. We consider the isometric subgraphs K, L and M depicted 
in Figures 3 to 5. To compute S2, we consider the Figure 3. Suppose C 
denotes the subgraph core and Di, 1 ≤ i ≤ n, are the set of vertices in the ith 
row of a tube in G[n]. By TopoCluj, we calculate that the summation of 
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distances between vertices of the core and the set D1 is 3480. In what 
follows, we obtain a recursive formula for computing S2. 

 

• The summation of distances between vertices of the core and the 
set D1 is 3480, 

• The summation of distances between vertices of the core and the 
set D1 ∪ D2 is 3480 + 12 × 384, 

• The summation of distances between vertices of the core and the 
set D1 ∪ D2 ∪ D3 is 3480 + 12 × 384 + 12 × (384 + 96), 

• The summation of distances between vertices of the core and the 
set D1 ∪ D2 ∪ D3 ∪ D4 is 3480 + 12 × 384 + 12 × (384 + 96) + 12 × 
(384 + 2 × 96), 

• The summation of distances between vertices of the core and the 
set D1 ∪ ... ∪ Dn is 3480  + 12 × 384 (n – 1) + 12 × 96 × 

.
2
1

2
1)1(

2
1 2 +−−⎥⎦
⎤

⎢⎣
⎡ nn  

 

Therefore, S2 = −1128 + 4608n + 576(n−1)2 – 576n + 576. Notice 
that for computing the Wiener index, we should compute 4S2. 
 We now calculate the quantity S3. To do this, we assume that RiRj 
denote the summation of distances between vertices of Di and Dj in 
subgraph L, Figure 4. For computing S3 it is enough to compute RiRj, for 1 ≤ 
i, j ≤ n. In Table 1, the occurrence of RiRj in S3 is computed. 
 

Table 1. The Number of RiRj in Computing S3. 
 

# Rows The Number of RiRj 
1 R1R1 
2 2R1R1 + R1R2 
3 3R1R1 + 2R1R2 + R1R3 
 

N 216n +528(n − 1) + [ ][ ]∑ +−−+−
=

2
1 )1()1(288792n

i ini  
 
 
 

 From Table 1, one can compute S3 as follows: 
S3 = 216n +528(n − 1) + [ ][ ]∑ +−−+−

=
2

1 )1()1(288792n
i ini  

322 )1(96)1(144)1(25213284)1(360 −−−+−−++−= nnnnnnn  
 

Notice that in computing the Wiener index of G[n], we should 
consider 4S3, Figure 1. 
 To compute S4, we assume that Di and Ei, 1 ≤ i ≤ n, denote the set 
of vertices in the ith row of two different arm tubes in G[n]. Using a similar 
argument as above, we assume that RiSj denote the summation of distances 
between vertices of Di and Ej, 1 ≤ i, j ≤ n. For computing S4 it is enough to 
compute RiSj, for 1 ≤ i, j ≤ n. In Table 2, the occurrence of RiSj in S4 is computed. 
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Table 2. The Number of RiSj in Computing S4. 
 

# Rows The Number of RiRj 
1 1224 
2 1224+2(1224+288)+(1224+2.288) 
3 1224+2(1224+288)+3(1224+2.288)+2(1224+3.288)+(1224+4.288) 
M  M  
n i)288)(2n(1224n

1i 1)(in
1i 1)288)(ii(1224 −+∑ = −+∑ = −+  

 
Therefore,  

.)1(288)1(86412241872)1(1224 22 +++−−−+=

−+∑ −+∑ −+= ==

nnnnnn

i)288)(2n(12241)(i1)288)(ii(1224S n
1i

n
1i4  

Figure 1. The Molecular Graph of Le1.1(Op(Q2.0(T)))_TU(3,3); n=3. 

 
Figure 2. The Core. Figure 3. The Subgraph K.  

  
Figure 4. The Subgraph L. Figure 5. The Subgraph M. 
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Finally, we notice that in computing the Wiener index of G[n], we 

should consider 
4
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 S4 (Figure 1), thus 6S4. We are now ready to state our 

main result. 
 

Theorem. The Wiener index of the molecular graph of nanojunction G[n] is 
computed as follows: 

W(G[n]) = 1920n3 + 8352n2 + 11856n + 5664. 
Proof. By above calculations W(G[n]) = S1 + 4S 2 + 4S 3 + 6S4. Thus, a simple 
calculation will prove the result. 
 
CONCLUSIONS 
 

In this paper the Wiener index of a carbon nanojunction is computed 
for the first time. To the best of our knowledge it is the first paper considering 
the Wiener index of such nanostructures into account. A powerful method 
for this calculation is presented which is extendable to other nanojunctions. 
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ABSTRACT. The purpose of this paper is to show the studies made on the 
pyrazine-2,3-dicarboxylic acid (PDCA) synthesis process by quinoxaline 
chemical oxidation on the nickel electrode with electrochemically regenerated 
potassium permanganate (KMnO4). It was followed the investigation of electrode 
reaction through cyclic voltammetry and the making of an efficient electrolyser 
for PDCA synthesis. Anodic regeneration of Mn7+ on the nickel electrode is 
possible. This process is favoured by KOH, Mn7+ (Mn6+ implicitly) and quinoxaline 
concentrations increase as well as temperature increase. Current and substance 
efficiencies of 80% and 85%, respectively, were achieved. 
 
Keywords: quinoxaline, pyrazine-2,3-dicarboxylic acid, potassium permanganate, 

cyclic voltammetry, electrolysis, nickel electrode. 
 
 
INTRODUCTION  

Medical statistics show that tuberculosis is once again on the verge of 
becoming a threat. This is why any method for synthesizing drugs known to 
have antituberculosis effects must be carefully evaluated and investigated [1].  

In this context pyrazine synthesis in the most advantageous 
conditions is of the outmost importance. The raw stock for the production of 
pyrazinamide is dipotassium-pyrazine-2,3-dicarboxylic acid (K2PDCA), 
which can be synthesized through chemical oxidation of quinoxaline (Q) [2-
4] with potassium permanganate in alkaline medium [5-7]: 

 

N

N COOK

COOK
COOK

COOK
+ + 16 K2MnO4  +  12 H2O

N

N

+  16 KMnO4  +  20 KOH       

 
 

The chemical oxidation involves a very high consumption of potassium 
permanganate, Q: KMnO4 = 1:16M (kg/kg) [8, 9]. By contrast, the original 
electrochemical process for PDCA synthesis proposed by us ensures 
considerable higher efficiencies. This paper focuses on how these efficiencies 
can be obtained using the perforated nickel plate electrode. 
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The chemical reaction taking place in the electrochemical process is 
similar to that of the classical chemical process, but potassium permanganate is 
continuously regenerated due to the electro-oxidation of potassium manganate 
generated during the process. This leads to appreciable decrease of potassium 
permanganate consumption, the ratio of reactants being higher: Q: KMnO4 =  
1 – 3: 1kg/kg. 

Previous studies have shown that Mn7+ regeneration on platinum 
electrode is possible both in the absence [10] and presence of quinoxaline [11]. 
The price of an electrolyser equipped with such an electrode is very high and 
finding a cheaper material for manufacturing of the anode, while maintaining 
the platinum performance, constitutes a strong issue for the process at hand.  

This paper shows the results obtained through cyclic voltammetry in 
the study of the Mn6+/Mn7+ couple behaviour on the nickel electrode as well 
as the manufacturing of the laboratory electrolyser made with perforated 
nickel plate electrode for PDCA synthesis using electrochemically regenerated 
potassium permanganate as chemical reagent. 
 
RESULTS AND DISCUSSION  

 

The Mn7+/Mn6+ redox couple behaviour in alkaline medium was studied 
through cyclic voltammetry. The curves obtained using the nickel anode in 4M 
KOH solution in the presence of manganese ions at various concentrations, 
are shown in figure 1.  

 

 
Figure 1. Cyclic voltammograms at different concentration (M) of Mn6+: 0(1); 0.4·10-3(2); 

2·10-3(3); 4·10-3(4); 8·10-3(5); 16·10-3(6);  [KOH] = 4M; 25ºC; v = 100 mV/s. 
 
Cycle 1 (blue) – generated in the absence of Mn6+ ions – shows an 

anodic peak at ~ 0.38V and a cathodic peak at ~ 0.16V. The presence of the 
two peaks is due to the reversible process:  
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                                 Ni2+ + e  ↔   Ni3+ 
 

When metallic Ni is sunk in a NaOH solution, it gets covered with a 
Ni(OH)2 monomolecular layer. During anodic polarization, the Ni2+ thus 
formed is converted in Ni3+ (NiOOH). The process is reversible and during 
cathodic polarization Ni(OH)2 is obtained once again. 

Increasing Mn6+ concentration (cycles 2-6) leads to a depolarization 
of the oxygen release and at the same time there is an observed decrease 
and slight displacement of the anodic peak towards more negative potentials. 
Another tendency towards more negative potentials is observed at the 
cathodic peak, starting at 0.16V. Besides this cathodic peak – present due to a 
reduction in Ni3+ – at the 0.100V potential a wave appears and increases.  
At an increase in Mn6+ ion concentration, the wave tends significantly towards 
more negative potentials and current intensity increases. The wave seems to 
appear as a result of the reduction in Mn7+ ions formed during the anodic process. 

It’s possible that Mn6+ oxidation on the nickel electrode takes place 
at the same time with oxygen release.  

During the process the color of the electrolyte solution turns from 
green to violet. 

An increase in temperature from 20 to 45ºC determines the increase of 
the peak currents. The anodic peak currents as functions of temperature and 
supporting electrolyte concentration for 4.10-3M K2MnO4 are shown in figure 2. 

 

 
Figure 2. Anodic current density variation with temperature and supporting 

electrolyte concentration for 4.10-3M K2MnO4.  
 
The regression equation is:  
 

i = -138 + 8.6 . t + 69.375 [KOH] – 1.975 . t [KOH] 
 

The cyclic voltammograms corresponding to different quinoxaline 
concentrations, obtained at 45oC in 2M KOH solution with 6·10-2M KMnO4, 
are shown in figure 3. Cycle 1, obtained in the absence of Q, the peak pair 
due to the Ni2+ + e- ↔ Ni3+ balance can be observed. The presence of 
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quinoxaline in the electrolyte solution leads to the disappearance of the Ni2+ 
oxidation peak and to the appearance of a new anodic peak – at 0.30V. 
The intensity of this peak increases with the Q concentration. The peak 
potential moves slowly towards more positive values as the Q concentration 
increases. Two peaks appear on the cathodic branch. The cathodic peak 
present at 0.15V – it’s associated with Ni3+ reduction – increases with the Q 
concentration and moves towards more negative potentials. Next to this 
peak there is another cathodic peak, present at a potential of 0.07V. This 
peak also increases with Q concentration and also tents towards more 
negative potentials. The peak appears in the same area where Mn7+ ions 
reduction takes place. 

It seems that Q oxidation can be achieved in two ways: direct oxidation 
on the electrode (at ~ 0.3V) and mediated oxidation with electrochemically 
regenerated Mn7+. The later takes place simultaneously with oxygen generation. 

 

 
 

Figure 3. Cyclic voltammograms obtained for different [Q]:  0(1); 0.4·10-3(2); 2·10-3(3) ; 
4·10-3(4) ; 8·10-3(5) and 16·10-3(6) M ; t = 45°C; 2M KOH solution, [KMnO4] = 6·10-2M,  

v = 100 mV/s.  
 
Cyclic voltammetry studies performed at 25oC and 45oC respectively, 

in KOH solution containing Mn6+ ions, on the nickel electrode show that:  
 

- there are several processes taking place on nickel electrode:  
 

 Ni2+    ↔   Ni3+  +  e-   
 Mn7+  + e-    ↔   Mn6+  

 

- the addition of Q in the electrolyte solution leads to disappearance of the 
Ni2+ anodic oxidation peak and to the appearance of a new anodic peak, at 
0.30V. This peak is associated with Q oxidation. The cathodic peaks don’t 
change when temperature is increased. 
 

- the increase in KOH concentration, temperature, Mn6+ and Q concentrations 
favours the anodic regeneration process of Mn7+. 



OBTAINING PYRAZINE-2,3-DICARBOXYLIC ACID THROUGH ELECTROCHEMICAL OXIDATION … 
 
 

  265 

The experimental results obtained on the nickel plate anode syntheses 
are shown in table 2, where: Qel – electricity quantity; Umed - cell tension; mQi – 
initial quantity of quinoxaline; mQf – final quantity of quinoxaline; Conv.- 
conversion of quinoxaline and m K2PDCA - K2PDCA quantity. 
 
Table 2. The experimental results for the PDCA synthesis on the nickel electrode 

with electrochemically regenerated KMnO4. 
 

I 
[A] 

i 
[A/m2] 

Qel 

[C] 
Umed 
[V] 

T 
[oC] 

mQi 

[g] 
mQf 
[g] 

Conv 
[%] 

mK2PDC 
[g] 

ηs 
[%]

ηc 
[%] 

C. En. 
KWh/Kg 

1.8 3.5 20000 3.5 45 2 0.3 85 2.5 66.6 79.10 7.78 

1.8 3.5 40000 3.5 45 2 0 100 3.2 85.2 50.62 12.15 

0.9 1.7 30000 2.1 45 2 0 100 2.8 74.6 59.06 6.25 

2.7 5.3 40000 3.8 45 2 0 100 2.5 66.6 39.55 16.89 

- KOH concentration – 23 %  
- quinoxaline concentration – 1,4 – 2,8 %  
- Mn7+ concentration – 1,4 %. 

 
The best results for the current yield ηc are achieved at a current 

density of 3.5 A/dm2. Lower current densities lead to a higher current efficiency 
and a lower cell tension Umed – thus to a desirable lower specific energy 
consumption C.En. = 6.25 KWh/Kg. On the other hand there is a high 
increase in reaction time and thus a decrease in electrolyser productivity. At 
higher current densities (5.3 A/dm2) the substance ηs and current efficiencies 
are acceptable, but energy consumption increases significantly. However, in 
this case, the electrolyser productivity is higher.  

 
CONCLUSIONS  

 

From our studies (we did not identify any similar data in the scientific 
literature) the Mn7+ regeneration takes place on the nickel electrode even at 
low current densities. Current efficiencies of ~ 80% have been achieved at 
~ 85% conversions and substance efficiencies of ~ 85% have been achieved 
at 100% conversions and a current efficiency of ~ 50%. Nickel constitutes a 
very good material for manufacturing the anode of a KMnO4 regeneration 
electrolyser used for quinoxaline oxidation.   
 
EXPERIMENTAL SECTION  

 

Electrochemical cell - Cyclic voltammetry method 
 

For the cyclic voltammetry studies we used a glass electrolysis cell 
(figure 4) equipped with a heating/cooling jacket and with three electrodes: 
the working electrode made from a nickel wire (0,008 cm2), the platinum counter 
electrode (1 cm2) and the SCE reference electrode. A PGZ 301 Dynamic-
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EIS Voltammetry potentiostat with VoltaMaster 4 software manufactured by 
Radiometer Copenhagen was also used in these studies. All electrochemical 
potentials mentioned in this paper are related to the SCE electrode unless 
otherwise specified. 

 
 

 
Figure 4. Electrochemical installation. 

 
 

Electrolyte solution: 2 - 4M KOH (electrolyte support), K2MnO4 0.4·10-3 - 
16·10-3 M; KMnO4 2·10-2 - 6·10-2 M, quinoxaline 1.18·10-2 – 3.62·10-2 M. We used 
two temperatures: 25 and 45oC. The quinoxaline was from Merck, KMnO4 from 
Riedel-de Haen and KOH, from Lach-Ner. 

The method for synthesizing potassium manganate is as follows: an 
alkaline aqueous solution of 8N KOH containing 10g of potassium permanganate 
was heated at a temperature of 120°C. After the color changed from violet 
(Mn7+) to intense green (Mn6+) the supersaturated solution of Mn6+ was obtained. 
K2MnO4 crystals were filtered from this solution on a S4 frit, washed with 
CHCl3, dried and weighed, and then directly dissolved in 8N KOH solutions (25 
ml measuring flask) and used in cyclic voltammetry tests. 

 
 
Laboratory electrolyser 
 

The perforated plate electrolyser had an electrolyser with a volume 
of ~ 100 ml. The perforated plate cathode and anode are shown in figures 5. 
The nickel anode underwent nitric acid pickling before each synthesis and 
between two syntheses it was washed with a mixture of sulphuric and oxalic 
acids.  

The general characteristics of the electrolyser and the working conditions 
are the following:  
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 - Anodic surface, cm2 SA = 0.51            
 - Cathodic surface, cm2 SC = 0.034  
 - Sa/Sc – ratio - 15  
 - Electrolyte volume, ml – 90  
 - Current density, mA/cm2 – 1.7 – 5.3  
 - Working temperature, oC – 45  
 - Total volume of the electrolyser, ml – 150  
 - anodic material – nickel perforated plate  
 - cathodic material – stainless steel  

 

 
Figure 5. Components of the electrolyser used for the preliminary results of KMnO4 

regeneration. 1 - anode; 2 – cathode; 3 – insulating tube. 
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ABSTRACT. Let G be a simple connected graph. Schultz and modified 
Schultz indices are defined as: 

{ , } ( )

( ) ( ) ( , )u v
u v V G

S G d u vδ δ
⊆

= +∑ ; 
{ , } ( )

( ) ( ) ( , )u v
u v V G

MS G d u vδ δ
⊆

= ∑ , where uδ is 

the degree of vertex u and ( , )d u v is the distance between u and v. Let e 
be an edge of a graph G connecting the vertices u and v. Define two sets 

1( )N e G  and 2( )N e G  as follows:  

1( ) { ( ) ( , ) ( , )}N e G x V G d x u d x v= ∈ <
 
and  

2( ) { ( ) ( , ) ( , )}N e G x V G d x v d x u= ∈ < .The number of elements of  

1( )N e G  and 2( )N e G  are denoted by 1( )n e G  and 2( )n e G   
respectively. Szeged index of G is defined as: 

1 2
( )

( ) ( ). ( ).
e E G

Sz G n e G n e G
∈

= ∑
 

In this paper we give a GAP program for computing the Schultz, the 
Modified Schultz and the Szeged indices of a simple connected graph. 
Also we compute and formulate these indices for a family of fullerenes by 
the software GAP and MAPLE.  
 
Keywords: Schultz index, Modified Schultz index, Szeged index, C12 (n-1) 

fullerenes. 
 
 
INTRODUCTION 
 

 A topological index is a numerical quantity that is mathematically 
derived in a direct and unambiguous manner from the structural graph of a 
molecule. Let G be a simple connected graph, the vertex and edge sets of 
G being denoted by V(G) and E(G), respectively. The distance between two 
vertices u and v of G is denoted by d(u,v) and it is defined as the number of 
edges in a shortest path connecting u and v. Diameter of G is denoted by d. 
Distance is an important concept in graph theory and it has applications in 
computer science, chemistry, and a variety of other fields. Topological indices 
based on the distances in graph, like Wiener index [1], are widely used for 
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establishing relationships between the structure of a molecular graph and 
its physicochemical properties.  
 In connection with certain investigations in mathematical chemistry, 
Schultz [2] considered a graph invariant that he called “molecular topological 
index” and denoted by MTI. It is defined as: 

 

 
where  is the degree of vertex i in G and   and   are elements of the 
adjacency matrix and distance matrix of G respectively. 
The essential part of MTI is the Schultz index S(G) [3]: 

{ , } ( )

( ) ( ) ( , )u v
u v V G

S G d u vδ δ
⊆

= +∑  

where uδ  is degree of vertex u and d(u,v) denote the distance between vertices 
u and v. 
Klavzar and Gutman in [4] defined a modified Schultz index as: 

{ , } ( )

( ) ( ) ( , )u v
u v V G

MS G d u vδ δ
⊆

= ∑  

Let e be an edge of a graph G connecting the vertices u and v. Define two 
sets 1( )N e G  and 2( )N e G  as follows: 

1( ) { ( ) ( , ) ( , )}N e G x V G d x u d x v= ∈ < and 

2( ) { ( ) ( , ) ( , )}N e G x V G d x v d x u= ∈ < . 

The number of elements of 1( )N e G  and 2( )N e G  are denoted by 1( )n e G  

and 2( )n e G  respectively.  
The Szeged index Sz was introduced by Gutman [5] and is defined as:  

1 2
( )

( ) ( ). ( ).
e E G

Sz G n e G n e G
∈

= ∑
 

Schultz, Modified Schultz and Szeged indices of the following nanotubes and 
fullerenes are computed: C60 fullerene [6], HAC5 C7 [p, q] [7], TUC4C8[p,q] [8,9], 
VC5C7[p,q] nanotube [10], HAC5C6C7[p,q] [11], dendrimer nanostars [12], 
HC5C7[r, p] [13], zigzag nanotube [14]. 
 In this paper, we give a GAP program for computing the Schultz, 
Modified Schultz and Szeged indices of C12(n-1) fullerenes.  
 
RESULTS AND DISCUSSION 
 

 The Schultz, modified Schultz and Szeged indices are topological 
indices based on distances in a graph.To obtain these indices, it needs to 
compute the degree of the vertices and the distance between the vertices. The 
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set of vertices having their distance to the vertex u equal to t is denoted by 
 and the set of vertices adjacent to vertex u is denoted by N(u). 

Let e=uv be an edge connecting the vertices u and v, then we have 
the following result: 

0
( ) ( ) , ( )

d

t
t

V G D u u V G
≥

= ∀ ∈U
 

( )
u ,t

u v
{ u ,v } V ( G )

u v
t u V ( G ) v D

S ( G ) ( )d( u,v )

t

δ δ

δ δ
⊆

∈ ∈

= +

= +

∑
∑ ∑ ∑  

( )
u ,t

u v
{ u ,v } V ( G )

u v
t u V ( G ) v D

MS ( G ) ( )d( u,v )

t

δ δ

δ δ
⊆

∈ ∈

=

=

∑
∑ ∑ ∑  

1 1( ( ) \ ( ) ) ( ( ) ( )) , 1.t t t tD u D v D v D v t− +⊆ ≥U

 1 2 1 1( ( ) ( )) ( ) ( ) ( ) ( ), 1t tt tD u D v N e G and D u D v N e G t− +⊆ ⊆ ≥I I

 1 1 1 1 1 2( ( ) { }) \ ( ( ) { }) ( ) ( ( ) { }) \ ( ( ) { }) ( ).D u u D v v N e G and D v v D u u N e G⊆ ⊆U U U U

 
 

 By using the following relations, we can determine the sets Du,t. 

,

,1

, 1 , , 1

( ),
( ( ) \ ( ) , 1.

u t

u

u t u t u tj D

D N u
D N j D D t+ −∈

=
= ≥U U

 

 

 According to the above relations, by determining the sets Du,t, we can 
compute the Schultz, the modified Schultz and the Szeged indices of a graph. 
 The fullerene is a hollow, pure carbon molecule in which the atoms lie 
at the vertices of a polyhedron with 12 pentagonal faces and any number 
(other than one) of hexagonal faces. The fullerenes discovered in 1985 by 
researchers at Rice University, are a family of carbon allotropes named after 
Buckminster Fuller. Spherical fullerenes are sometimes called buckyballs. 
A family of Fullerene is C12(n-1) ( n denote the number of layers) Figure 1. 
 

 
Figure 1. C12(n-1) fullerene (n=11). 
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 By using the following GAP program, we can compute the Shultz, 
the Modified Schulttz and the Szeged indices of a graph. Input of the program 
is the set of adjacent vertices.  
 

D:=[];  deg:=[];  e:=[]; 
for i in [1..n] do  D[i]:=[]; D[i][1]:=N[i]; deg[i]:=Size(N[i]); 
u:=Union(u,D[i][1]);   r:=1; t:=1; u:=[i];    
while r<>0 do   D[i][t+1]:=[]; 
for j in D[i][t] do 
for m in Difference (N[j],u) do 
AddSet(D[i][t+1],m); 
od;  
od; 
u:=Union(u,D[i][t+1]); 
  if D[i][t+1]=[] then r:=0; 
fi; 
t:=t+1; 
od; 
od; 
A:=[]; T:=[];S:=0;  MS:=0;  sz:=0; 
for i in [1..n] do 
for t in [1..Size(D[i])] do 
for j in D[i][t] do  S:=S+(deg[i]+deg[j])*t;   
MS:=MS+(deg[i]*deg[j]*t); 
od;   od;od; 
for i in [1..n-1] doN1:=[]; 
for j in Difference(N[i],T) do   N2:=[]; 
N1[j]:=Union(Difference(N[i],Union([j],N[j])),[i]); 
N2[i]:=Union(Difference(N[j],Union([i],N[i])),[j]);        
for t in [2..Size(D[i])-1] do 
for x in Difference(D[i][t],Union(D[j][t],[j])) do 
if not x in D[j][t-1] then    AddSet(N1[j],x); 
elif x  in D[j][t-1] then    AddSet(N2[i],x);  
fi; 
od; 
od; 
sz:=sz+Size(N1[j])*Size(N2[i]); 
od;  
Add(T,i); 
od; 
 S:=S/2; #(The value of S is equal to the Schultz index of the graph) 
 MS:=MS/2; #(The value of MS is equal to the Modified Schultz index of the graph) 
sz; #(The value of sz is equal to szeged index of the graph 
 

 In Table 1, the Shultz, the  Modified Schulttz and the Szeged indices of 
C12(n-1) fullerene for some n are computed by the above GAP software.  
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Table 1. The Shultz, the  Modified Schulttz and the Szeged indices of C12(n-1) fullerene. 

n Number of 
vertices Schultz index Modified Schultz index Szeged index 

5 48 28728 43092 29508 
6 60 51084 76626 59616 
7 72 82224 123336 104052 
8 84 123768 185652 166236 
9 96 177408 266112 247248 

10 108 244872 367308 349332 
11 120 327888 491832 474912 
12 132 428184 642276 626460 
13 144 547488 821232 806532 
20 228 2059992 3089988 3083100 
24 276 3608568 5412852 5410428 
30 348 7158312 10737468 10741740 
36 420 12512088 18768132 18779100 
41 480 18620928 27931392 27947940 
57 672 50845824 76268736 76303140 
69 816 90884448 136326672 136374468 
76 900 121862808 182794212 182849820 
82 972 153447624 230171436 230233740 
95 1128 239665392 359498088 359574900 
100 1188 279928152 419892228 419974620 

 
 In the following, the formulas of these indices are obtained by the 
software Maple.  
 

The Schultz index of C12(n-1) fullerene is : 
3 2

12( 1)( ) = 288n   864n   5832n –  15048  8nS C n− − + ≥  
 

The Modified Schultz of C12(n-1) fullerene is: 
12(

3
1

2
)( 432 1296 8748 22572 8,)nM S n n n nC − = − + − ≥  

 

The Szeged indices of C12(n-1) fullerene is: 
12(

3
1

2
)( 432 1296 9864 51780 12.)nSz n n n nC − = − + − ≥  

 
 
CONCLUSIONS 
 

 In this paper, a GAP program for computing the Schultz and Modified 
Schultz indices of a simple connected graph is presented. Input of the program 
is the set of adjacent vertices of the graph. The formulas for these indices in 
C12(n-1) fullerenes are derived by Maple software and examples are computed 
by the software GAP. 



ALI IRANMANESH, YASER ALIZADEH, SAMANE MIRZAIE 
 
 

 274 

 
REFERENCES 

 
 

1. H. Wiener, J. Am. Chem. Soc., 1947, 69, 17. 
2. H.P. Schultz, J. Chem. Inf. Comput. Sci., 1989, 34, 227. 
3. H.P. Schultz, T.P. Schultz, J. Chem. Inf. Comput. Sci., 1993, 33, 240. 
4. S. Klavzar and I. Gutman, Disc. Appl. Math., 1997, 80, 73. 
5. P.P. Khadikar, N.V. Deshpande, P.P. Kale, A.A. Dobrynin, I. Gutman, G. Domotor, 

J. Chem. Inf. Comput. Sci., 1997, 35, 545. 
6. Y. Alizadeh, A. Iranmanesh and S. Mirzaie, Dig. J. Nanomater. Biostruct., 2009, 

4, 7. 
7. A.Iranmanesh, Y. Alizadeh, Am. J. Appl. Sci., 2008, 5, 1754. 
8. A. Heydari, B. Taeri, J. Comp. Theor. NanoSci., 2007, 4, 158. 
9. A. Heydari, B. Taeri, MATCH Commun. Math. Comput. Chem., 2007, 57, 665. 
10.  A. Iranmanesh, Y. Alizadeh, Int. J. Mol. Sci., 2008, 9, 131. 
11.  A. Iranmanesh, Y. Alizadeh, Dig. J. Nanomater. Biostruct., 2009, 4, 67. 
12.  A. Iranmanesh, N. Gholami, Croat. Chem. Acta, 2008, 81, 299. 
13.  A. Iranmanesh, A. Mahmiani, and Y. Pakravesh, Szeged index of HC5C7[r, p] 

Nanotubes. ArsCombinatorics, 89 (2008), 309. 
14.  E. Eliasi and B. Taeri, MATCH Commun. Math. Comput. Chem., 2006, 56, 383. 



STUDIA UBB. CHEMIA, LV, 4, 2010 
 
 

EXPRESSION OF PHENYLALANINE AMMONIA-LYASES  
IN ESCHERICHIA COLI STRAINS 

 
 

KLAUDIA KOVÁCSa,b, ANDRÁS HOLCZINGERc,  
BEÁTA VÉRTESSYb,c, LÁSZLÓ POPPEa* 

 
 

ABSTRACT. Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) catalyzes 
the non-oxidative conversion of L-phenylalanine into (E)-cinnamate. PAL 
can be applied in organic synthesis, and can be considered also for enzyme 
supplementation cure for genetic disorder phenylketonuria. The aim of this 
study was to find optimal expression parameters of several previously cloned 
PAL’s (bacterial, plant and a chimera) in pBAD vectors for further functional 
characterization. Investigation of the expression level of PAL's in E. coli 
hosts with SDS PAGE analysis as well as activity assay of the recombinant 
PAL enzymes was performed. 

 
Keywords: phenylalanine ammonia-lyase, heterologous protein expression, 

biocatalysis, phenylketonuria 
 
 
INTRODUCTION  
 

Phenylalanine ammonia-lyase (PAL) catalyzes the non-oxidative 
conversion of L-phenylalanine into (E)-cinnamate (Figure 1) [1].  
 

 
 

Figure 1. Non-oxidative deamination of phenylalanine 
 

PAL is an important enzyme in both plant development and pathogen 
defense. In all plants PAL is encoded by a multi-gene family, ranging in 
copy number from four in Arabidopsis to a dozen or more copies in some 
higher plants [2]. The PAL participates in five metabolic pathways: tyrosine, 
phenylalanine and nitrogen metabolism, phenylpropanoid and alkaloid 
biosynthesis. Because of its key role between the primary and secondary 
metabolism in plants, PAL is a potential target for herbicides. 
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By reversing the natural direction of the PAL reaction in the presence 
of high concentration of ammonia, optically pure L-phenylalanine, which is the 
precursor molecule of the artificial sweetener aspartame (L-phenylalanyl-L-
aspartyl methyl ester) can be produced. Similarly, starting from various 
(hetero)arylacrylates, further enantiopure L-phenylalanine analogues, such 
as L-piridil/pirimidil-alanines can be also prepared. Since neither cofactor 
recycling nor other additives are needed in these asymmetric syntheses, 
they are potentially interesting as industrial processes as well [3a-e]. 

In addition to its application in synthetic chemistry, PAL can be applied 
also in human medicine as treatment to avoid the effects (mental retardation, 
neurotoxic effects) of the most common congenital metabolic disease, 
phenylketonuria (PKU). Daily oral administration of micro-encapsulated PAL to 
PKU rats decreased the systemic toxic phenylalanine level by 75 ± 8% in  
7 days (P < 0.001) [4]. Because of its many scopes, PAL is an extensively 
studied enzyme. 

Although PAL is an ubiquitous higher-plant enzyme, it has only been 
encountered in a few bacteria, where cinnamic acid is involved in biosynthesis 
of several specific bacterial products, such as oligosaccharide antibiotics [5a-c].  

The major difference between eukaryotic and prokaryotic PAL’s is a ca. 
150-residue long C-terminal extension of the eukaryotic PAL’s (per monomeric 
unit) which is not present in the prokaryotic PAL’s (Figure 2) [6].  In plant and 

 
 

 
 

Figure 2. Tetrameric structures of PALs  
(A) Homology model of P. crispum PAL [7]; (B) Homology model of P. luminescens PAL [6]; 

(C) Difference between eukaryotic and prokaryotic PAL monomers 
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fungal PAL’s,the additional C-terminal domain forms an arch over the active 
site and has been proposed to function as a shielding domain by restricting 
substrate entry and product egress. Alternatively, this domain may influence 
the conformation of an active-site lid loop and thereby affect the stability and 
catalytic activity of the holoenzyme. Molecular dynamics studies confirmed the 
hypothesis that the C-terminal extension decreases the lifetime of eukaryotic 
PAL by destabilization, which might be important for the rapid responses in 
the regulation of phenylpropanoid biosynthesis [6]. 

One of the PAL enzymes expressed in this study was an artificial chimera 
[L. Poppe, A. Holczinger, unpublished] composed of the C-terminal domain of 
a bacterial PAL from Photorhabdus luminescens and of the catalytic N-terminal 
domain of the plant PAL from Petroselinum crispum. The main goal with the 
expression and thermostability investigations of this chimera PAL is to prove 
the hypothesis on the destabilizing role of the C-terminal extension of the 
eukaryotic PAL’s. 

 
RESULTS AND DISCUSSION 

Expressions of Petroselinum crispum PAL and the Photorhabdus 
luminescens PAL were used as references. The catalytic N-terminal segment 
of the Photorhabdus luminescens PAL was expressed also, to compare the 
activity of this segment to native enzyme. In addition to the Photorhabdus 
luminescens PAL, an other PAL (hereafter HA1) gene of a bacterium growing 
at relatively high temperature was expressed as well.  

To express the PAL genes from different organisms (bacteria, plant 
and a chimera), pBAD-24 and pBAD-HisB vector systems were investigated in 
two E. coli strains (Rosetta (DE3) and TOP 10) as hosts (Table 1.). 

Table 1. The expressed genes and the applied vectors 

 
The pBAD vectors containing the PAL genes with relatively weak 

promoter were used for expression work. The advantage of the the AraC- pBAD 
expression system is that in the presence of L-arabinose the expression from 
the promoter is turned on, while in the absence of L-arabinose very low level of 
transcription from pBAD promoter can occur. The uninduced level is repressed 

Gene Vector Main objectives 
Petroselinum crispum PAL (PcPAL);  
~2150 bp 

pT7-7 (2470 bp) Eukaryotic reference;  
optimized system 

N-terminal segment of Photorhabdus 
luminescens PAL (PhN); ~1420 bp 

pBAD-24 (4542 bp) Study the catalytic activity of 
the N-terminal segment. 

Chimera (CHI): N-terminal of PcPAL 
and C-terminal of Photorhabdus 
luminescens PAL; ~1650 bp  

pBAD-24 (4542 bp) Activity and thermostability 
of the artificial enzyme  

Photorhabdus luminescens PAL (Phl6); 
~ 1600 bp 

pBAD-24 (4542 bp) Bacterial reference; known, 
characterized bacterial PAL 

PAL from a thermophilic bacterium (HA1); 
~ 1700 bp 

pBAD-HisB (4092 bp.) Activity and thermostability of 
the PAL from a thermophile. 
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even further by growth in the presence of glucose. By varying the concentration 
of L-arabinose, protein expression levels can be optimized to ensure maximum 
expression of soluble protein. In addition, the tight regulation of pBAD by AraC 
is really effective to minimize the leakiness of the promoter. 

For cloning and transformation, a recA, endA, araBADC- and araEFGH+ 
TOP10 strain was used, which is capable of transporting L-arabinose, but not 
metabolizing it, and Rosetta (DE3), which doesn't have the araBADC- mutation 
to prevent arabinose degradation. To the latter strain, the same amount of 
inductor was re-added at 4 h after the first induction to maintain full induction. 

Our aim was to optimize the conditions of the expression with the pBAD 
vector constructions in the two E. coli hosts to achieve expression levels of the 
PAL enzymes which are satifactory for further biochemical and biocatalytic 
characterizations. The effects of the expression conditions (temperature, 
expression time, inductor concentration) on the protein expression level and the 
activity and thermostability of the enzymes have been studied. Thus, the 
temperature of expression was varied between 18 ºC to 37 ºC in 3-5 ºC steps, 
the time of expression was changed between 8-22 h in 2-4 h steps. The inductor 
concentration was increased gradually from 0,002 to 0,02 %. 

After cell disruption by sonication, the PAL activity of the crude extract 
was determined by measurement PAL by monitoring the formation of (E)-
cinnamate at 290 nm (ε290= 104 L M-1 cm-1 [3e]). At 290 nm, absorbance of 
aromatic amino acid residues of the proteins, nucleic acids and denaturation of 
proteins can influence the measurement, therefore the absorbance values 
were always corrected with the blind values from determinationd with same 
amount of substrate-free buffer and supernatant without substrate. The PAL 
content of the crude extract was confirmed also by SDS-PAGE investigation 
of samples from various fractions (supernatant, pellet etc.).  

Increasing the expression temperature and shortening the expression 
time had favorable effect on expression levels of all bacterial expressions. 
The highest expression levels were found at the maximum concentration 
(0.02 %) of the arabinose inductor. In all cases, expressions with TOP 10 strain 
(Figure 3a) resulted higher level expression than with Rosetta (DE3) strain 
(Figure 3b). Unfortunately, no expression was detected with the chimera PAL 
in the pBAD systems in our hands (Figure 3a). 

The optimal parameters of the expressions were determined by 
considering the SDS-PAGE and activity (Us: Units/L of crude extract) results 
together, compared to the expression level and the activity of the Petroselinum 
crispum PAL expression as reference (Table 2.). Although the bacterial PAL's 
were expressed at low level according to the SDS-PAGE, the activites of the 
expressed bacterial PAL's in the crude extracts (3.3−7.5 U L-1) were comparable 
to the PAL activity of the crude extract of PcPAL (8.5 U L-1) (Table 2). As the 
purification method for PcPAL at this level of expression is well established 
[3e,7], expression of the bacterial PAL's at comparable levels followed by 
further purification steps will be enough to investigate the thermostability 
(Figure 3a) and biotransformation properties of the prokariotic PAL's. 
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Figure 3. SDS-PAGE on PAL expressions in E. coli TOP 10 and Rosetta strains 
(a) SDS-PAGE of the PAL expression in E. coli TOP 10 [Lane 1: molecular mass markers (250, 

130, 95, 72, 55, 36, 28,17 kDa); Lane 2: supernatant after cell lysis of the expression of 
HA1 (58,4 kDa); Lane 3: supernatant after cell lysis of the expression of phN; (51,17 kDa); 
Lane 4: supernatant after cell lysis of the expression of Phl6; (57,57 kDa); Lane 5: supernatant 
after cell lysis of the expression of Chi (~58 kDa)]; 

(b) SDS-PAGE: the different between the expression of the two E. coli strains [Lane 1: molecular 
mass markers (250, 130, 95, 72, 55, 36, 28,17 kDa); Lane 2: expression of HA1 (58,4 kDa) 
in Rosetta (DE3) strain; Lane 3: expression of HA1 (58,4 kDa) in TOP 10 strain]. 

 
Table 2. The optimal expression conditions of PALs in pBAD vectors  

and activity of the crude extracts 
Expressed enzyme Inductor 

 
Temperature

(°C) 
Time 
(h) 

Us 
(U/L) 

P. crispum PAL [8] 1 mM IPTG 20 20 8.5 
P. luminescens PAL 0,2 % arabinose 30 12 7.5 
N-terminal segment of  
P. luminescens PAL 

0,2 % arabinose 25 18 6.2 

HA1  bacterial PAL 0,2 % arabinose 25 16 3.3 
 

To achieve higher PAL yield, coexpression with pREP4-groESL 
chaperon plasmid was investigated as well (Figure 4.).  

Analysis of the expression level of the bacterial PAL’s with this 
coexpression system proved to be difficult, because the size of groEL chaperon 
(~65 kDa) is similar to the bacterial enzymes (~60 kDa). Thus, appraise the 
level of PAL expression by SDS-PAGE failed (Figure 4.). Because the level of 
chaperon expression seems to exceed the level of PAL expression, construction 
of a vector system carrying the PAL and chaperon genes under the contol 
of the same promoter is considered.  
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Figure 4. The gro-EL chaperone coexpression with bacterial PAL's (~60 kDa) 

Lane 1: molecular mass markers (250, 130, 95, 72, 55, 36, 28, 17 kDa);  
Lane 2: supernatant after cell lysis of the reported expression of HA1 (58,4 kDa) in E. coli TOP 10 

(coexpression of the pREP4-groESL chaperon plasmid) 
 
 
CONCLUSIONS 

 

In this study, expression of several bacterial phenylalanine ammonia-
lyases in Eschericia coli TOP 10 using pBAD vactor was investigated. The 
activity assay of the expressed bacterial PAL’s using the supernatant of the 
E. coli lysate indicated catalytic activity and thus the presence of active soluble 
enzymes. The expression levels of the bacterial PAL’s were adequate for 
further investigations. The highest protein expression level by SDS-PAGE was 
found in the expression of N-terminal segment of Photorhabdus luminescens 
PAL, whereas the highest crude supernatant activity was achieved with the 
native Photorhabdus luminescens PAL. Due to the non-synchronized expression 
and overproduction of the chaperon protein in the pBAD-PAL / pREP4-groESL 
chaperon coexpression system, cloning of the PAL genes without and with 
groESL chaperon into pET vector is considered.  
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EXPERIMENTAL SECTION 
 

 Transformation and expression of PAL genes 
 

E. coli TOP 10 and Rosetta (DE3) strains were transformed with different 
plasmids containing PAL genes (see Table 1.) and grown in 50 mL low salt 
LB broth/medium with 100 μg/mL ampicillin [and 35 μg/mL chlorampehnicol 
only for Rosetta (DE3) strain] overnight 37°C with shaking (220 rpm) until 
OD600= ~1.5. From the resulting culture, 800 μL volume was added to 50 mL 
LB (containing 100 µg/mL ampicillin and 35 μg/mL chlorampehnicol). The 
resulting cultures were grown at 37°C with vigorous shaking until OD600 = ~0.6. 
At this OD, the temperature was changed to the induction temperature (in a 
range of 18 ºC − 37 ºC; 4 ºC steps for screening) and the cells were induced 
with arabinose (in a range of 0,02-0,2 %; 0.05 % steps for screening). At 4 h 
after the first induction, the same amount of inductor was added to Rosetta 
cell cultures. After addition of the inducer, the cultures were further cultivated 
for 12 h and harvested by centrifugation. All subsequent operations were 
carried out at 4 ºC.  

 
 

 Cell disruption and activity measurement 
 

The pellet was resuspended in 5 mL of lysis buffer (150 mM NaCl, 
50 mM TRIS pH 8.0, 10 mM BME Protease inhibitor cocktail, 2 mM PMSF, 
5 mM BA) and sonicated in ice bath at amplitude 40 % and pulsation 60 % 
using a Bandelin Sonopuls HD 2070 instrument. The sonication was performed 
until the viscosity of the suspension was significantly lowered. After centrifugation 
(30 min at 5000 x g), PAL activity was determined in the crude extract by 
monitoring the formation of (E)-cinnamate at 290 nm (ε290 =104 L M-1 cm-1). 
The assay contained performed at room temperature by addition of 100 μL 
of the supernatant from the crude extract to 1000 μL of 0.1 M Tris-HCl, pH 8.8, 
containing 20 mM L-phenylalanine and recording the absorbance at 290 nm 
for 10 min. The PAL content of the crude extract, supernatant and pellet were 
analyzed by SDS-PAGE as well. 
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NOVEL SOLID SUPPORTS FOR LIPASES IN SOL-GEL 
IMMOBILIZATION SYSTEMS 

 
 

DIÁNA WEISERa, ANNA TOMINa, LÁSZLÓ POPPEa,* 
 
 

ABSTRACT. Sol-gel encapsulation of lipases proved to be a particularly easy 
and effective way to enhance the mechanical and catalytic properties of 
biocatalysts. The sol-gel encapsulated enzymes usually retain their selectivity 
whereas their heat stability or specific activity may be significantly improved. 
The aim of our work was to improve the immobilization of lipases in supported 
sol-gel systems. First, the binding properties of lipase AK on various solid 
supports were studied. Next, the immobilization properties of the best 
adsorbent-lipase combinations were tested in sol-gel encapsulation using 
tetraethoxy-silane/octyltriethoxy-silane/phenyltriethoxy-silane 1/0.7/0.3 silane 
precursor system. 
 
Keywords: lipase, biocatalysis, adsorption, supported sol-gel immobilization 

 
 
INTRODUCTION 

 

Lipases (EC 3.1.1.3) are extensively utilized biocatalysts in organic 
chemistry [1,2]. Lipases are essential in the digestion, transport and processing 
of lipids (e.g. triglycerides, fats, oils) in most, if not all, living organisms. However, 
lipases are also being exploited as inexpensive and easy-to-use biocatalysts 
in more modern applications [3,4,5]. For instance, lipases are used in 
applications such as baking and laundry detergents and even as biocatalysts 
in alternative energy strategies to convert vegetable oil into biofuel [6]. Lipases 
are flexible biocatalysts which can catalyze a wide range of regio- and 
enantioselective reactions such as hydrolysis, esterifications, transesterifications, 
aminolysis and ammoniolysis [1,7,8]. These reactions usually proceed with 
high regio- and/or enantioselectivity,  therefore lipases became indispensable 
biocatalysts in various biotransformations. Development of efficient/economical 
biotransformations often requires robust technologies for immobilization of 
biomolecules or microorganisms. Immobilization of enzymes can enhance 
their activity, thermal and operational stability, and reusability which is important 
for industrial applications [9,10]. Among many available immobilization methods, 
including adsorption, covalent attachment to solid supports and entrapment 
within polymers [9,10], entrapment of enzymes in inorganic/organic hybrid 
polymer matrices has received a lot of attention in recent years and has 
provided new possibilities in the field of material science [11,12]. We report 
here the binding properties of lipases on various solid carriers and further 
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immobilization of the adsorbed lipases in hydrophobic sol-gel materials, which 
results in the formation of highly active, stable and reusable heterogeneous 
biocatalysts. 
 
RESULTS AND DISCUSSION 

 

Adsorption of the lipases at the large specific surface area of porous 
supports can avoid the aggregation of proteins and thus can result in an 
increased activity of the biocatalysts. In our study the adsorption behavior 
of four different lipases − from Pseudomonas fluorescence (lipase AK), from 
Burkholderia cepacia (lipase PS), from Candida cylindracea (lipase CcL) and 
BUTE-3 [13] − on various solid supports were investigated. Ten kinds of carriers 
with different porosity were examined. Most of them were different types of 
silica gel, but Celite 545 and Filtracel-950 were also studied.  

Our recent study indicated that better sol-gel immobilization results 
can be achieved with lipases adsorbed previously on solid support than with 
simultaneous addition of the lipase and the supporting material to the silane 
precursor system [14]. Therefore, our further aim was to use the best supporting 
materials showing the most pronounced enhancement in the enzyme activity 
in combined sol-gel encapsulation as well. To test the biocatalytic properties of 
the resulting biocatalysts, the kinetic resolution of 1-phenylethanol with vinyl 
acetate in hexan/THF 2:1 was used as model reaction. The immobilization 
efficiency was characterized by several parameters such as specific biocatalyst 
activity (Ub), specific enzyme activity (Ue), enantiomer selectivity (E) and 
conversion (c).  

OH

r ac-1

lipase

vinyl acetate

OH

(S)-1

O

(R)-2

+

O

 
 

Figure 1. Lipase-catalyzed kinetic resolution of racemic 1-phenylethanol 
 

Analysis of the above parameters for the free and adsorbed lipases 
indicated that in many cases the biocatalytic properties of enzymes adsorbed 
on solid support were superior compared to the native lipase (Table 1.). 

Because the enantiomeric excess (ee) of the forming acetate (R)-2 
alone is not characteristic for the selectivity, the degree of enantiomer 
selectivity was characterized by the E value calculated from the conversion 
(c) and enantiomeric excess  of the forming acetate (R)-2 (ee(R)-2) [15]. The 
activity yield [YA (%)] can be calculated from the effective specific activity of 
the immobilized biocatalyst (Ue,imm-LAK) compared to the effective specific 
activity of the free Lipase AK (Ue,LAK) [14]. 
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Table 1. Behavior of free and adsorbed lipases in kinetic resolution of racemic  
1-phenylethanol rac-1 with vinyl acetate. 

 

Lipase Adsorbenta cb Eb Ue YA
c 

  %  (µmol min-1 g-1) % 
Lipase AKd - 49 >100 10 100 
Lipase AK Filtracel-950 22 >200 82 818 
Lipase AK Davisil 150 18 >100 69 687 
Lipase AK Grace 915 22 72 85 848 
Lipase AK Grace 920 30 >200 113 1124 
Lipase AK PQ 300 22 >200 85 847 
Lipase PSd - 29 »200 14 14 
Lipase PS Filtracel-950 48 >200 104 725 

CcLd - 7.6 3 2.6 100 
CcL Geduran Si 60 0.9 2,9 3.3 127 

BUTE-3d - 50 »200 17 100 
BUTE-3 Grace 920 7.9 62.1 30 174 

 

a The enzyme / adsorbent mass ratio was 1 / 10; 
b Results after 4 h reaction time. The enantiomer selectivity (E) was calculated from c and ee(R)-2 [15] and 

ee(S)-1 and ee(R)-2 [16] simultaneously. Due to sensitivity to experimental errors, E values calculated in 
the 100-200 range are reported as >100, values in the 200-500 range are reported as >200 and 
values calculated above 500 are given as »200;  

c Activity yield; d Free lipase without immobilization 
 
By entrapment the lipases adsorbed on a large surface in a sol-gel 

matrix the diffusional limitations can be decreased leading to immobilized lipases 
with enhanced catalytic properties. The study of adsorption of the lipase AK on 
four silica supports revealed that the activity yield (YA) could be increased more 
than 800 % compared to specific activity of the free enzyme. The reason of this 
large effect can be the large surface area of the silica supports of pore diameters 
between 60 and 150 Å. This pore size range allows the adsorption of the enzyme 
inside the pores and thus formation of a thin layer on the total surface of the 
catalyst with practically no diffusion limitations for the substrate to reach and the 
product to leave from the catalyst. The same effect can be observed with lipase 
PS using Filtracel-950. On the other hand, the activity yields (YA) for lipase CcL 
and BUTE-3 were not enhanced significantly by the adsorptive immobilization. 

As the activity yield (YA) enhancement by adsorption was most pronounced 
with lipase AK, further investigation was performed with this enzyme using the 
four most effective solid supports in a combined adsorption / sol-gel immobilization 
process (Table 2.). In this study, the preadsorption of Lipase AK on silica-gels 
was followed by sol-gel immobilization using the tetraethoxy-silane/octyltriethoxy-
silane/phenyltriethoxy-silane precursors in 1/0.7/0.3 molar ratio which was 
found optimal in our previous study with Celite as solid support [17]. The best 
results were achieved with the combined sol-gel entrapment using the Grace 
915 support, because the activity yield (YA) enhancement (Table 2) was as 
high as for the simple adsorption without sol-gel (Table 1).  

Besides the reusability of the sol-gel immobilized lipases, the formation 
of sol-gel polymer matrix can increase significantly the stability of the biocatalysts. 
The long-term stability test of entrapped lipases indicated that full activity of the 
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sol-gel biocatalysts was retained after storage in refrigerator or at room 
temperature (1 day, 1 week, 1 month tests) [18]. The full activity was also maintained 
for our novel sol-gel lipases after 1 month storage at room temperature. 
 
Table 2. Behavior of sol-gel immobilized supported Lipase AK in kinetic resolution 

of racemic 1-phenylethanol rac-1 with vinyl acetate. 
 

Supporta cb Eb Ue YA
c 

 %  (µmol min-1 g-1) % 
- 49 >100 10 100 

Grace 920 3,9 38 16 156 
Grace 915 16 34 87 868 
Davisil 150 8.2 75 40 400 

PQ 300 5.1 50 22 218 
 

a Lipase AK adsorbed on solid support (Table 1) was added to the tetraethoxy-silane/octyltriethoxy-
silane/phenyltriethoxy-silane 1/0.7/0.3 silane precursor system during sol-gel matrix formation;  

b Results after 4 h reaction time. The enantiomer selectivity (E) was calculated from c and ee(R)-2 [15] 
and ee(S)-1 and ee(R)-2 [16]. simultaneously. Due to sensitivity to experimental errors, E values calculated in 
the 100-200 range are reported as >100;  

c Activity yield 
 

CONCLUSION 
 

The activity and stability of lipases had been increased significantly 
by applying commercially available solid silica supports of wide pores. The 
adsorptive or the combined sol-gel immobilization did not influence the 
selectivities of lipases, whereas the robust combined adsorption / sol-gel 
encapsulation resulted in biocatalysts which are reusable and thus applicable 
in various synthetic processes.  

 
EXPERIMENTAL SECTION 

 

Chemicals and enzymes 
Lipase AK (lipase from Pseudomonas fluorescens), Lipase PS (lipase 

from Burkholderia cepacia), CcL (lipase from Candida cylindracea), and Davisil 
150 were obtained from Sigma-Aldrich. 2-Propanol (IPA), vinylacetate and 
sodium fluoride (NaF) were products of Aldrich. 1- Phenylethanol, 2-heptanol, 
polyethylenglycol 1000 (PEG), Celite® 545, tetraethoxy-silane and phenyltriethoxy-
silane were obtained from Fluka. Octyltriethoxy-silane were obtained from Alfa 
Aesar. Grace 920, Grace 915 were obtained from Grace. PQ 300 was obtained 
from PQ Corporation. Filtracel EFC-950 was a product of Rettenmaier and 
Söhne GMBH. Geduran® Si 60 was obtained from Merck KGaA. The lipase 
BUTE-3 was obtained as described earlier [13]. 
 

Preadsorption of lipases on solid adsorbent 
The lipase powder (50 mg) was suspended in TRIS-HCl buffer (0.1 M, 

pH 7.5, 25 mL) at room temperature. The solid support (500 mg) was added to 
the solution. After and stirring (at 800 rpm for 15 min), the resulting suspension 
was kept at 4°C for 24 h. After filtration, the residual solid was washed with 
buffer (25 mL), dried at room temperature at air overnight and finally dried 
in vacuum exicator for 3 h.  
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Immobilization of lipases in sol-gel systems 
The solution of TRIS-HCl buffer (0.1 M, pH 7.5, 390 μL), polyethylene 

glycol (PEG, 4% w/v, 200 μL), aqueous sodium fluoride (NaF, 1M, 100 μL) 
and 2-propanol (IPA, 200 μL) were shaken at room temperature for 10 minutes 
in a glass of 20 ml vial. Then the silane precursors [tetraethoxy-silane, 
octyltriethoxy-silane, phenyltriethoxy-silane precursors in 1/0.7/0.3 molar 
ratio; total 780 μmol] were added to the aqueous solution and the resulting 
two-phase emulsion was shaken for further 5 minutes until gelation. The 
lipase powder (22.7 mg free or 250 mg preadsorbed lipase) was added to 
the gel at intensive shaking. To complete the polymerization, the mixture was 
shaken for 12 h at room temperature. The forming fine, white powder was 
washed by 2-propanol (7 ml), distilled water (5 ml), 2-propanol (5 ml) and n-
hexane (5 ml). The immobilized biocatalysts were dried in a vacuum exicator 
for 5 h then stored in air at room temperature. The immobilization efficiency was 
calculated on the basis of the enzyme supplied to the immobilization process. 
 
 

Esterification assay  
To a solution of racemic 1-phenylethanol (rac-1, 50 mg, mmol) in hexane/ 

THF 2/1 (1 mL) and vinyl acetate (100 μL), biocatalyst (50 mg) was added and 
the mixture was shaken in a sealed glass vial at 1000 rpm at room temperature. 
For GC analyses, samples were taken directly from the reaction mixture (sample 
size: 10 μL, diluted with CH2Cl2 to 100 μL) at 2,4,8 and 24 h. Data on conversion 
and enantiomeric selectivity of the process with various enzymes are presented 
in Tables 1 and 2.  

 
 

Gas chromatographic analysis of the products 
The products of the kinetic resolutions with the various lipase biocatalysts 

[(R)-2 and (S)-1] were analyzed by gas chromatography on Acme 6100, equipped 
with flame ionization detector and Hydrodex β-6TBDM [30 m × 0.25 mm × 0.25 μm 
film of heptakis-(2,3-di-O-methyl-6-O-t-butyldimethyl-silyl)-β-cyclodextrin] column. 
The oven temperature, injector and detector temperatures were 135, 250 and 
250 °C, respectively. Hydrogen was used as carrier gas at constant flow 
(1.8 mL/min). 
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SYNTHESIS AND LIPASE CATALYSED KINETIC RESOLUTION 
OF RACEMIC AMINES 

 
 
PÉTER FALUSa, ZOLTÁN BOROSa, GÁBOR HORNYÁNSZKYa, JÓZSEF 

NAGYa, LÁSZLÓ ÜRGEb, FERENC DARVASc, LÁSZLÓ POPPEa* 
 
 

ABSTRACT. Feasibility of production of amines from ketones employing 
metal and/or metal-catalysts in one-pot and one-step reductive amination 
(modified Leuckart- and Leuckart-Wallach- reaction) and lipase catalysed 
kinetic resolution of racemic amines in batch and continuous-flow reactor were 
investigated. In kinetic resolutions the effect of the solvent, the acetylating 
agent and the lipase itself was examined. 

 
Keywords: reductive amination, metal-catalysis, lipase, continuous-flow reactor, 

kinetic resolution 
 
 
INTRODUCTION 

 

Enantiomerically pure chiral amines are valuable building blocks of 
quite a number of drugs [1], pesticides [2] and colour pigments [3]. Considerable 
amount of drugs are amines or amine derivatives. 

Biotechnology and biocatalysis are increasingly employed to produce 
optically active intermediates of drugs [4]. Hydrolases can be efficiently used for 
synthetic biotransformations due to its favourable characteristics [5, 6, 7, 8]. 
Hydrolases can catalyze several related reactions such as hydrolysis, 
condensations, alcoholysis and aminolysis. Lipases are proved to be highly 
versatile biocatalyst in stereoselective biotransformations such as kinetic 
resolutions [9], deracemisations and dynamic kinetic resolutions [10]. 
Enantioselective enzymatic reactions are typically carried out in batch mode 
[5, 9, 11, 12], however a few studies state these are feasible in continuous-
flow system [13, 14, 15, 16]. 
 
RESULTS AND DISCUSSION 

 

In our previous work, one-step reductive amination of various ketones 
was examined [17]. It was found that in those cases when the carbonyl-group 
is at α-position from an aromatic or heteroaromatic ring Zn dust promoted 
reactions gave the corresponding amines without notable side reactions, whereas 
in the case of aliphatic and cycloaliphatic ketones 10% Pd/C-catalysis was 
suitable.  
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The amines 2a-d for the enzymatic studies were prepared by the 
reductive amination of the corresponding ketone 1a-d by our novel method [17] 
(Scheme 1). Aliphatic ketones 1a,b were treated with ammonium formate in 
methanol at 40ºC until the disappearance of the starting ketone. The reaction 
was catalysed by 10% Pd/C and was performed in continuous-flow reactor. 
Conversely, Zn dust proved to be an effective catalyst for the transformation 
of carbonyl groups at benzylic sidechain position of aromatic system 1c,d at 
the reflux temperature of methanol in batch reaction (Scheme 1). The following 
yields were achieved: 53% for rac-2a, 41% for rac-2b, 71% for rac-2c and 
71% for rac-2d. 

NH2

NH2 NH2 NH2

rac-2a rac-2b rac-2c rac-2d

R1

O

R2 R1 R2

NH2

HCOONH4

Zn, MeOH, reflux

HCOONH4

MeOH

1a-d rac-2a-d10% Pd/Cp

40°C

 
Scheme 1 

 

Herein, we intended to study the effects of solvent and nature of the 
biocatalyst on the lipase catalysed kinetic resolution of four racemic amines 
2a-d. For selecting the proper catalyst for the continuous-flow mode kinetic 
resolution various lipases (immobilized and non-immobilized) were screened in 
batch mode. The two examined CalB (Candida antarctica Lipase B) enzymes 
– immobilized on polymeric carriers by two different methods – resulted in 
formation of (R)-N-acetamides in high enantiomeric excesses (ee) with moderate 
to good conversions (c). Our in house made BUTE 3 (F-4) [18] biocatalyst also 
gave acceptable enantiomeric excess and conversion in certain cases.  

Efficiency of the biocatalytic reactions are highly influenced by the 
milieu. Thus, different solvents (toluene, trifluorotoluene, tert-butyl methyl ether, 
diisopropyl ether, ethyl acetate, hexane, tetrahydrofuran, hexane-tetrahydrofuran 
2:1) and acetylating agents (ethyl acetate, isopropenyl acetate, ethylene glycol 
diacetate) were examined next. The best results (ee and c) were reached with 
the use of ethyl acetate as acetylating agent in toluene (representative results in 
toluene are in Table 1). It was also noticed that the use of ether-like solvents 
gave high enantiomeric excesses, however with lower conversions (data not 
shown). Our study also revealed, that the nature of immobilization of lipase B 
from Candida antarctica (Novozym 435 vs. CalB T2-150) had remarkable effects 
on the activity and selectivity of the enzyme (Table 1).  
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Table 1. Kinetic resolution of racemic amines 2a-d with ethyl acetate in toluene 

Substrate Enzyme Time [h] c [%]a ee(R)-3a [%]a Ec,ee(P) [%]b 
2a Novozym 435 8 25.4 98.0 >100 
2a CalB T2-150 8 11.5 97.9 >100 
2a Novozym 435 24 37.0 96.0 86 
 2a CalB T2-150 24 19.7 97.1 85 
2b Novozym 435 8 39.8 97.4 >100 
2b CalB T2-150 8 28.9 98.7 >200 
2b BUTE 3 (F-4) 8 18.7 97.7 >100 
2b Novozym 435 24 52.7 96.4 -c 
2b CalB T2-150 24 43.5 96.8 >100 
 2b BUTE 3 (F-4) 24 28.0 98.4 >100 
2c Novozym 435 8 12.0 95.5 50 
2c CalB T2-150 8 3.2 85.3 13 
2c Novozym 435 24 25.5 94.2 46 
 2c CalB T2-150 24 8.1 88.3 17 
2d CalB T2-150 8 3.3 94.3 35 
2d Novozym 435 8 16.4 96.4 66 
2d CalB T2-150 24 9.1 92.2 27 
2d Novozym 435 24 32.1 95.0 61 

 

a Determined by chiral phase GC;  
b Calculated by using c and ee(R)-3a [19]. Due to sensitivity to experimental errors, E values calculated in 

the 100–250 range are reported as >100, values above 250 are given as >200;  
c Enantiomeric selectivity can not be calculated properly above 50% conversion [19]. 
 

Finally, kinetic resolutions of racemic amines 2a-d were performed 
at preparative scale in X-Cube reactor operating in continuous-flow mode. 
The solution of the corresponding amine 2a-d in toluene-ethyl acetate 9:1 
was pumped through a Novozym 435 filled CatCart column thermostated to 
30ºC at a flow rate of 0.5 mL min-1 (Scheme 2). 

 

 
 

Scheme 2 
 

After the stationary state reached (~8 times dead volume of the 
column, 40 min), feeding the reactor with amine 2a-d was continued for 6 h. 
The N-acetamide 3a-d was isolated from the collected homogenous solutions 
(Table 2). In all cases, higher enantiomeric excesses and conversions were 
obtained in continuous-flow reactor than in the corresponding batch reaction. 
The main advantage of the continuous-flow system with lipase filled-columns 
is the recyclability and the efficient and reproducible use of the catalyst. 
This was demonstrated by repeating the 6 h long reactions of amines 2a-d 
in a second series of 6 h long reactions using the same Novozym 435-filled 
column with the same results. 
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Table 2. Kinetic resolution of racemic amines 2a-d by Novozyme 435  
in continuous-flow reactor 

Substrate c [%]a ee(R)-3 [%]b Ec,ee(P) [%]c 
2a 43.3 97.9 >200 
2b 47.2 98.8 >200 
2c 48.1 98.7 >200 
2d 45.7 99.3 »200 

a Determined after removal of the solvent from the resulting mixture;  
b Determined by chiral phase GC;  
c Calculated by using c and ee(R)-3 [19]. Due to sensitivity to experimental errors, E values calculated in 

the 100–250 range are reported as >100, values in the 250–500 range are reported as >200 and 
values calculated above 500 are given as »200 

 
CONCLUSIONS 

 

In this study, solvent and catalyst effects on the kinetic resolutions of 
racemic amines 2a-d (synthesized from the corresponding ketones 1a-d) in batch 
and in continuous flow mode were investigated. It was found that immobilized 
forms of lipase B from (Novozym 435 and CalB T-2 150) are the most suitable 
biocatalysts in acylations with ethyl acetate in toluene with the examined 
substrates 2a-d. Comparison of the batch and continuous mode reactions 
indicated that the continuous-flow process was superior to the corresponding 
batch reaction in cases of all the four (R)-acetamides (R)-3a-d. 
 
EXPERIMENTAL SECTION 

 

Analytical methods 
The NMR spectra were recorded in DMSO on a Bruker DRX-500 

spectrometer and are reported in ppm on the δ scale. Infrared spectra were 
recorded on a Bruker ALPHA FT-IR spectrometer. TLC was carried out on 
Kieselgel 60F254 (Merck) sheets. Spots were visualized under UV light (Vilber 
Lourmat VL-6.LC, 254 nm and 365 nm) or by treatment with 5% ethanolic 
phosphomolybdic acid solution and heating of the dried plates. GC analyses 
were carried out on Younglin ACME 6100 or Agilent 4890D instruments 
equipped with FID detector and Hydrodex-β-TBDAc column (50 m × 0.25 mm × 
0.25 μm film with heptakis-(2,3-di-O-acetyl-6-O-t-butyldimethylsilyl)-β-cyclodextrin; 
Macherey&Nagel) or Hydrodex-β-6TBDM column (25 m × 0.25 mm × 0.25 μm 
film with heptakis-(2,3-di-O-methyl-6-O-t-butyldimethylsilyl)-β-cyclodextrine; 
Macherey&Nagel) using H2 carrier gas (injector: 250°C, detector: 250°C, head 
pressure: 10 psi, 50:1 split ratio). The continuous flow reactions were performed 
by X-CubeTM laboratory flow reactor (X-CubeTM - trademark of ThalesNano, 
Inc.; Ser. No.: 002/2006) equipped with 10% Pd/C [THS 01111] or Novozym 
435 [THS 01724] filled CatCartTM columns (CatCartTM – registered trademark 
of ThalesNano Inc.: cat. no.: THS X1175; stainless steel (INOX 316L); inner 
diameter: 4 mm; total length: 70 mm; packed length: 65 mm; inner volume: 
0.816 mL).  
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Chemicals and enzymes 
Heptan-2-one 1a; 4-phenylbutan-2-one 1b; acetophenone 1c; 3,4-

dihydronaphthalen-1(2H)-one 1d; ammonium formate and all further chemicals 
and solvents were of analytical grade or higher were products of Sigma, 
Aldrich, Fluka, Alfa Aesar or Merck. 10% Pd/C [THS 01111] and Novozym 
435 [THS 01724] filled CatCartTM columns were products of ThalesNano, 
Inc. Lipase AK, Lipase PS, Lipase AYS were obtained from Amano Europe. 
Novozym 435 was purchased from Novozymes, Denmark. Mucor miehei lipase, 
Lipase PPL, Lipase CcL, Candida rugosa were products of Sigma. Lipase AY, 
Lipase M were obtained from Amano Pharmaceutical. Lipozyme TL IM was 
purchased from Novo Nordisk A/S. CalB T2-150, CalA T2-150, CRL T2-150, 
IMMAULI T2-150 were products of Chiral Vision. Lipobond-Lipase PS was a 
kind gift of Iris Biotech GmbH. The sol-gel immobilzed lipases (sol-gel lipase 
AK: 338b and 251b; sol-gel lipase PS) [20], lipases from thermophilic fungi 
(BUTE 3 (T-2), BUTE (F-4)) [18] and lipases from solid-state fermentations 
(SSF9, SSF23) [21] were prepared in our laboratory. 

 

General procedure of the continuous-flow reductive amination  
of ketones (1a,b) [17] 
The solution of the corresponding ketone (5 mg mL-1 of 1a,b: 0.044 

mmol mL-1 of 1a, 0.034 mmol mL-1 of 1b) and 6 equiv. ammonium formate 
(16.65 mg mL-1 for 1a, 12.86 mg mL-1 for 1b) in methanol was pumped 
through the 10% Pd/C filled column thermostated to 40°C at a flow rate of 
0.2 mL min-1 without choking (no measurable back-pressure). After the 
stationary state reached (approximately 8x the whole volume of the system) 
the mixture was pumped through the column for 6 hours. After a run the 
columns were routinely washed with methanol (0.5 mL min-1, 20 min).  The 
collected reaction mixture was concentrated under reduced pressure. The 
residue was treated with conc. HCl solution (3 mL) and water (20 mL) and 
extracted with diethyl ether (2x15 mL). The aqueous phase was treated 
with ammonia solution until pH=10 and extracted with dichloromethane 
(4x20 mL). The organic phase was treated with brine, dried over sodium 
sulfate and the solvent was distilled off from the resulting solution by rotary 
evaporation to give the amines 2a-d. 

 

racemic Heptan-2-amine rac-2a: pale yellow liquid; 1H NMR (300 MHz, 
DMSO-d6): 0.86 (3H, t, J=7.0 Hz, CH3); 0.93 (3H, d, J=6.2 Hz, CH3); 1.11-1.36 (8H, m, 
4×CH2); 2.93 (brs, NH2+H2O); 2.71 (1H, m, J=6.3 Hz, CHN); 13C NMR (75 MHz, 
DMSO-d6): 14.47 (CH3); 22.70 (CH2); 24.49 (CH3); 26.08 (CH2); 32.10 (CH2); 40.29 (CH2); 
46.87 (CH); IR (cm-1): 3325, 3284, 2956, 2927, 2858, 1564, 1456, 1362, 1294, 1166, 
1097, 855, 814, 725 

 

racemic 4-Phenylbutan-amine rac-2b: colourless liquid; 1H NMR (300 MHz, 
DMSO-d6, δ ppm): 1.00 (3H, d, J=6.3 Hz, CH3); 1.43-1.58 (4H, brs+m, NH2+CH2); 2.50-
2.70 (2H, m, CH2); 2.74 (1H, q, J=6.3 Hz, CHN); 7.12-7.29 (5H, m, 5×CH); 13C NMR 
(75 MHz, DMSO-d6, δ ppm): 24.09 (CH3); 32.10 (CH2); 41.74 (CH2); 45.92 (CH); 
125.42 (CH); 128.14 (2×CH); 128.16 (2×CH); 142.51 (C); IR (cm-1): 3412, 3396, 2956, 
2925, 2858, 1561, 1458, 1363, 1302, 1163, 886, 854, 815, 723, 460 



P. FALUS, Z. BOROS, G. HORNYÁNSZKY, J. NAGY, L. ÜRGE, F. DARVAS, L. POPPE 
 
 

 294 

General procedure for the reduction of ketones 1c,d to amines 2c,d in  
one-step batch synthesis [17] 
A mixture of the ketone 1c,d (10 mmol: 1.46 g of 1c, 1.20 g of 1d), 

ammonium formate (60 mmol, 3.78 g) and Zn powder (30 mmol, 1.96 g) in 
methanol (30 mL) was stirred under reflux until disappearance of the ketone 
(monitored by TLC). The reaction mixture was strained through Celite®, and 
the solvent was removed under vacuum. The residue was treated with conc. 
HCl solution (4 mL) and water (30 mL) and extracted with diethyl ether 
(2x20 mL). The aqueous phase was treated with ammonia solution until 
pH=10 and extracted with dichloromethane (4x25 mL). The organic phase was 
treated with brine, dried over sodium sulfate and the solvent was distilled 
off from the resulting solution by rotary evaporation. 

 

racemic 1-Phenylethanamine rac-2c: colourless liquid; 1H NMR (300 MHz, 
DMSO-d6, δ ppm): 1.24 (3H, d, J=6.6 Hz, CH3); 3.02 (brs, NH2+H2O); 3.97 (1H, q, 
J=6.6 Hz, CHN); 7.18 (1H, m, CH); 7.29 (2H, m, 2×CH); 7.36 (2H, m, 2×CH); 13C NMR 
(75 MHz, DMSO-d6, δ ppm): 26.69 (CH3); 51.16 (CH); 126.25 (2×CH); 126.64 (CH); 
128.57 (CH); 149.26 (C); IR (cm-1): 3362, 3301, 3061, 3026, 2965, 2924, 2868, 1604, 
1579, 1492, 1475, 1450, 1364, 1024, 859, 762, 698, 591, 537 

 

racemic 1,2,3,4-Tetrahydronaphthalen-1-amine rac-2d: yellow liquid; 1H NMR 
(300 MHz, DMSO-d6): 1.47-1.72 (2H, m, CH2); 1.78-1.96 (2H, m, CH2); 2.57-2.78 (2H, m, 
CH2); 3.02 (brs, NH2+H2O);  3.79 (1H, t, J=6.2 Hz, CHN); 6.98-7.16 (3H, m, 3×CH); 
7.40-7.48 (1H, m, CH); 13C NMR (75 MHz, DMSO-d6): 19.97 (CH2); 29.67 (CH2); 33.76 
(CH2); 49.41 (CH); 125.96 (CH); 126.42 (CH); 128.61 (CH); 128.89 (CH); 136.73 (C); 
142.39 (C); IR (cm-1): 3412, 3381, 3057, 3015, 2924, 2858, 1578, 1488, 1447, 1371, 1337, 
1155, 884, 854, 761, 733, 584, 433 

 

Enantiomer selective acetylation of racemic amines 2a-d in shake vials 
To a solution of the racemic amine 2a-d (20 mg) in toluene-ethyl 

acetate 9:1 mixture (1 mL), the enzyme (20 mg) was added in a sealed amber 
glass vial and the resulting mixture was shaken (1000 rpm) at 30°C for 24 h. 
The reactions were analyzed by GC and TLC after 1, 2, 4, 8 and 24 hours. 

 

Enantiomer selective acetylation of racemic amines 3a-d in continuous  
mode 
The solution of racemic amine 2a-d (10 mg mL-1) in toluene-ethyl acetate 

9:1 mixture was pumped through three serially connected Novozym 435-filled 
CatCart columns operated at 30ºC and the product was collected at a flow 
rate of 0.5 mL min-1 without choking. After 40 min (which was necessary to 
reach the stationary state of the bioreactor) the reaction mixture was collected 
for 6 h. The solvent was removed from the reaction mixture by vacuum rotary 
evaporation. The residue was dissolved in dichloromethane (100 mL), treated 
with 5% HCl solution (10 mL) and the aqueous phase was extracted with 
dichloromethane (4x3 mL). The combined organic phases were dried over 
Na2SO4 and concentrated under vacuum. The aqueous phase was alkalized 
with ammonia solution to pH=10 and extracted with dichloromethane (3x10 mL). 
The organic phase was dried over Na2SO4 and concentrated under vacuum. 
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(R)-N-(Heptan-2-yl)acetamide (R)-3a: yellow oil; 1H NMR (300 MHz, DMSO-d6, 
δ ppm): 0.85 (3H, t, J=7.0 Hz, CH3); 0.99 (3H, d, J=6.6 Hz, CH3); 1.15-1.40 (8H, m, 
4×CH2); 1.76 (3H, s, CH3); 3.70 (1H, m, CHN); 7.62 (1H, br d, J=8.1 Hz, NH); 13C NMR 
(75 MHz, DMSO-d6, δ ppm): 14.38 (CH3); 21.22 (CH3); 22.52 (CH2); 23.14 (CH3); 
25.86 (CH2); 31.72 (CH2); 36.57 (CH2); 44.54 (CH); 168.76 (CO); IR (cm-1): 3275, 
3079, 2959, 2928, 2858, 1638, 1550, 1453, 1371, 1293, 1157, 974, 726, 608 

 

(R)-N-(4-Phenylbutan-2-yl)acetamide (R)-3b: pale yellow liquid; 1H NMR 
(300 MHz, DMSO-d6): 1.04 (3H, d, J=6.6 Hz, CH3); 1.57-1.71 (2H, m, CH2); 1.81 
(3H, s, CH3); 2.48-2.61 (2H, m, CH2); 3.75 (1H, m, CHN); 7.11-7.21 (3H, m, 3×CH); 
7.22-7.31 (2H, m, 2×CH); 7.74 (1H, br d, J=8.1 Hz, NH); 13C NMR (75 MHz, DMSO-d6): 
21.24 (CH3); 23.24 (CH3); 32.42 (CH2); 38.44 (CH2); 44.42 (CH); 126.09 (CH); 128.83 
(4×CH); 142.36 (C); 168.93 (CO); IR (cm-1): 3271, 3084, 3065, 2967, 2929, 1637, 1546, 
1495, 1453, 1371, 1292, 1144, 967, 746, 698, 609 

 

(R)-N-(1-Phenylethyl)acetamide (R)-3c: tawny crystals; 1H NMR (300 MHz, 
DMSO-d6): 1.33 (3H, d, J=7.2 Hz, CH3); 1.84 (3H, s, CH3); 4.90 (1H, m, CHN); 7.14-7.26 
(1H, m, CH); 7.27-7.36 (4H, m, 4×CH); 8.30 (1H, br d, J=7.9 Hz, NH); 13C NMR (75 MHz, 
DMSO-d6): 22.47 (CH3); 22.64 (CH3); 47.78 (CH); 125.93 (2×CH); 126.64 (CH); 
128.28 (2×CH); 144.87 (C); 168.30 (CO); IR (cm-1): 3266, 3071, 3023, 2980, 2929, 1643, 
1555, 1451, 1375, 1286, 1278, 1216, 1136, 1070, 1027, 763, 702, 620, 533, 501 

 

(R)-N-(1,2,3,4-Tetrahydronaphthalen-1-yl)acetamide (R)-3d: brown crystals; 
1H NMR (300 MHz, DMSO-d6): 1.58-1.78 (2H, m, CH2); 1.79-1.95 (5H, m, CH3+CH2); 
2.63-2.82 (2H, m, CH2); 4.90-5.03 (1H, m, CHN); 7.04-7.20 (4H, m, 4×CH); 8.22 
(1H, br d, J=8.5 Hz, NH); 13C NMR (75 MHz, DMSO-d6): 20.47 (CH2); 23.20 (CH3); 
29.25 (CH2); 30.48 (CH2); 46.86 (CH); 126.28 (CH); 127.22 (CH); 128.67 (CH); 129.28 
(CH); 137.45 (C); 138.07 (C); 169.05 (CO); IR (cm-1; KBr): 3240, 3062, 2928, 2854, 
1633, 1544, 1445, 1371, 1283, 1095, 1038, 965, 764, 739, 610, 536, 446 
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RAPID AND SIMPLE ANALYSIS OF ALLICIN IN 
 ALLIUM SPECIES BY LC-CIS-MS/MS 

 
 

LAURIAN VLASEa,*, MARCEL PÂRVUb, ANCA TOIUa, ELENA ALINA 
PÂRVUc, SIMONA CODRUŢA COBZACd, MIHAI PUŞCAŞe 

 
 

ABSTRACT. A simple liquid chromatography-coordination ion spray-mass 
spectrometry method (LC-CIS-MS/MS) for analysis of allicin in Allium species 
extracts has been developed. Allicin was chromatographic separated under 
isocratic conditions using a mobile phase of 1 mM ammonium acetate. A silver 
nitrate solution was post-column added to enhance the allicin detection by 
formation an ionized coordinated complex. The overall time of one analysis was 
1 min. The detection of allicin was performed in multiple reaction monitoring 
mode using an ion trap mass spectrometer with electrospray positive ionization. 
The linearity domain was established between 18 and 864 µg/mL. Inter-day 
accuracy and precision were less than 11% and 2.2%, respectively. 

 
Keywords: allicin, Allium extracts, liquid chromatography, coordination mass 

spectrometry 
 
 
INTRODUCTION  

 

Allium species have been used for food and medicine for thousands of 
years, especially Allium sativum (garlic) and Allium cepa (onion), and recently 
interest in other species has been increasing [1,2]. Garlic is considered as 
a medicinal plant and especially one of the best disease-preventive foods 
against some forms of cancer and cardiovascular disorders. Its beneficial 
widespread effect on health is attributed to sulphur-containing compounds, 
and particularly to thiosulfinates [3]. When garlic is cut or crushed, the enzyme 
alliinase is released from its compartment and transforms S-allyl-L-cysteine 
sulfoxide (alliin) into diallyl thiosulfinate (allicin, ALC, Fig.1), the characteristic 
compound of garlic flavor. The hypocholesterolaemic activity of garlic has been 
attributed to diallyl disulphide, a decomposition product of ALC [4]. Ajoene (a 
secondary degradation product of alliin) inhibits platelet aggregation by altering 
the platelet membrane via an interaction with sulphydryl groups [4]. Antimicrobial 
activity is well documented for garlic, and antifungal activity is more effective 
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than nystatin (ALC is the main active component by inhibition of lipid synthesis). 
In vitro antiviral activity was attributed to ALC and its derivatives, and alliin 
has anti-hepatotoxic activity in vitro and in vivo [4,5]. 

Several methods for qualitative or quantitative determination of ALC 
have been reported. Mainly, high performance liquid chromatography methods 
with UV or MS detection were described [6-10]. However, the main drawback 
of the previously reported methods for analysis of ALC are the long analysis 
time – about 10-30 minutes per sample and the poor specificity in case of 
UV detection (Table 1).  

The analysis by liquid chromatography-coordination ion spray-mass 
spectrometry method (LC-CIS-MS/MS) has been used as an alternative 
technique instead of classical LC/MS, especially when a compound does not 
readily ionize in the ion source of mass spectrometer due low proton affinity. In 
the LC-CIS-MS/MS, the molecule is ionized by attachment of a metallic ion 
with coordination capabilities (usually silver) instead of a proton. The site of 
coordination is usually a carbon-carbon double bond [11] or sulfur atom [12].  

 
Figure 1. Molecular structure of ALC 

 

The aim of present study is the development of a rapid and specific 
LC-CIS-MS/MS method for ALC quantification from Allium extracts. In comparison 
with previously published HPLC methods (Table 1), the proposed method is 
rapid and specific. 
 
RESULTS AND DISCUSSION 

 

Although ALC absorb UV light at 220 nm and in the literature there 
are reported analytical methods using this type of detection [6-8, 10], frequent 
interferences may appear at this wavelength because of lack of selectivity, 
leading to measurement errors.  

Regarding mass spectrometry analysis, because ALC does not 
have ionizable chemical groups (either acidic or basic) it cannot be readily 
ionized under the influence of the pH of the mobile phase, so it cannot be 
detected „as it is” by LC/MS-electrospray with good sensitivity. 

The sulphur-containing compounds have the ability to form adduct 
complexes with some transitional metals. Because of the metallic ion, such 
complex has an electric charge and it can be analyzed by mass spectrometry 
with electrospray ionization. For ALC and some of its derivatives, their complexes 
with silver were already reported, but only for qualitative analysis [12]. In order to 
obtain the selectivity in quantitative measurement of ALC by LC/MS we used 
for quantification the adduct complex formed by ALC and the silver ion. An 
aqueous silver nitrate 1mM solution at a flow rate of 10 µL/min was post-column 
added to effluent.  
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Table 1. Analytical characteristics of several reported HPLC or LC/MS 
methods for the determination of ALC in vegetal extracts  

 

Extraction Mobile phase Detection Run time 
(min) 

Observations Ref. 

Extraction  
at room 
temperature 

Sodium 
dihydrogenphosphate+
heptanesulfonic acid / 
acetonitrile, gradient 

HPLC-UV, 208 nm 30 Other ALC 
derivatives  
also analysed 

6 

Ultrasonic 
extraction/ 
centrifugation 

Water-methanol, 
isocratic 

HPLC-UV, 254 nm 20 - 7 

Turboextraction, 
liquid-liquid 
extraction 

Water-methanol, 
isocratic 

HPLC-UV, 254 nm 
after post-column 
photochemical 
derivatisation 

10 - 8 

Supercritical  
fluid extraction 

Water-acetonitrile 
gradient 

LC-APCI-MS 25 Other ALC 
derivatives  
also analysed 

9 

Vortex-
sonication 

Water-methanol, 
isocratic 

HPLC-UV, 220 nm 15 - 10 

 
The pseudo-molecular mass spectra (MS1, no fragmentation applied) 

obtained for ALC-silver complex (Fig. 2) shows two main ions with m/z 449 
and 451, corresponding to a molecular formula [2*ALC+H2O+Ag]+, in which 
the silver ion is surrounded by two ALC molecules and one molecule of water. 
The two major ions from the spectra (m/z 449 and 451) are the adducts formed 
by the two silver isotopes. The mass spectrum of ALC-silver complex (MS2, 
fragmentation applied) is shown in Fig. 3 and the proposed main fragmentation 
pathways in Fig. 4.  

 
 

441.9
447.0

449.0

451.0

465.5

+MS, 0.1-0.1min #(17-21)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

6x10
Intens.

425 430 435 440 445 450 455 460 465 m/z  
Figure 2. Pseudo-molecular (MS1) non-reactive ion on mass spectra of  

ALC-silver complex 
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6

5x10
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260 280 300 320 340 360 380 400 420 440 m/z  
Figure 3. MS/MS mass spectra of ALC-silver complex 

 

 
Figure 4. The proposed fragmentation pathways of ALC-silver complex  

 
 The peak of ALC was observed at RT = 0.9 min (Fig. 5).  
 The calibration curves showed linear response over the entire range 
of concentrations used in the assay procedure. The calibration curve for ALC 
was in the concentration range 18.0-864.0 µg/mL, using 7 calibration levels, 
n = 3 days, with a coefficient of correlation greater than 0.999. The residuals 
had no tendency of variation with concentration and were between ±13.1% 
values. The bias and precision of calibration curves are presented in Table. 2. 

The developed analytical method was applied for analysis of ALC in 
five Allium species extracts. The found concentrations are presented in 
Table 3. The extracts prepared by heating at 60 ºC (“C” extracts) are richer in 
ALC content than “R” extracts, proving that extraction at higher temperatures 
favors the transformation of alliin to ALC. 
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Figure 5. Typical chromatogram of the ALC standard (upper image)  

and A. obliquum extract (lower image) 
 

Table 2. The bias and precision for ALC determination method 

 Calibration 1 Calibration 2 Calibration 3 Inter-day 
precision 

Inter-day 
bias 

Cnominal  
µg/mL 

Cfound  
µg/mL Bias % Cfound 

µg/mL Bias % Cfound 
µg/mL Bias % % % 

18.0 18.7 4.0 18.6 3.3 18.8 4.4 0.56 3.91 
36.0 33.0 -8.2 32.8 -8.9 32.3 -10.2 1.09 -9.11 
72.0 75.0 4.1 77.5 7.7 78.4 9.0 2.34 6.92 

144.0 160.8 11.6 162.9 13.1 155.9 8.3 2.24 11.00 
288.0 266.4 -7.5 267.0 -7.3 267.3 -7.2 0.17 -7.33 
576.0 576.5 0.1 563.9 -2.1 570.2 -1.0 1.11 -1.00 
864.0 874.0 1.2 871.9 0.9 869.7 0.7 0.25 0.91 
Slope 5630.80 5576.19 5690.72 

Interrcept 44976.69 34772.45 48727.85 
r 0.99931 0.99915 0.99935 

 

 
Table 3. The ALC content found in various Allium extracts 

Allium species ALC  
(mg/ml in 

“R” extracts)

ALC  
(mg/100 g 

vegetal product, 
“R” extracts) 

ALC  
(mg/ml in “C”

extracts) 

ALC 
(mg/100 g 

vegetal product, 
“C” extracts) 

A. obliquum 2.819 272.806 5.579 426.629 
A. senescens subsp. 

montanum 
0.919 82.474 5.880 435.931 

A. schoenoprasum 3.968 320.001 3.410 947.222 
A. fistulosum 0.122 5.275 4.481 896.225 

A. ursinum (leaves) 0.028 1.965 - - 
A. ursinum (flowers) 1.946 175.614 - - 
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CONCLUSIONS 
 

This is the first reported quantitative analytical method for determination 
of ALC by using LC-CIS-MS/MS. The developed method is fast (1 minute run-
time), selective and provides high-throughput in analysis of ALC from Allium 
species extracts. 

 
EXPERIMENTAL SECTION 

 

Reagents 
Reference standard of Allicin (ALC) was purchased from “Allicin 

International”, Great Britain. Methanol, ammonium acetate and silver nitrate 
were Merck products (Merck KgaA, Darmstadt, Germany). Distilled, deionised 
water was produced by a Direct Q-5 Millipore (Millipore SA, Molsheim, France) 
water system.  

 

Standard solutions 
A stock solution of ALC with concentration of 4 mg/mL was prepared 

by dissolving appropriate quantity of reference substance in 10 mL metanol. 
The working solution was obtained by diluting a specific volume of stock 
solution with water. This solution was used to prepare 7 calibration solutions 
with concentration range between 18-864 µg/mL.  

 

Chromatographic and mass spectrometry systems and conditions 
The HPLC system was an 1100 series model (Agilent Technologies) 

consisted of a binary pump, an in-line degasser, an autosampler, a column 
thermostat, and an Ion Trap SL mass spectrometer detector (Brucker Daltonics 
GmbH, Germany). Chromatograms were processed using QuantAnalysis 
software. The detection of ALC was in MS/MS mode using electrospray positive 
ionisation (ESI+). The monitored ion transition was m/z (449 + 451) > m/z 
(269 + 271 + 287 + 289) Chromatographic separation was performed at 40◦C 
on a Synergy Polar 100 mm x 2 mm i.d., 4 µm column (Phenomenex, Torrance, 
SUA), protected by an in-line filter. 

 

Mobile phase 
The mobile phase consisted in 100% ammonium acetate, 1mM in 

water, isocratic elution, flow 0.6 mL/min. A silver nitrate solution 1mM in water 
was post column added, with a flow of 10 µL/min. 

 

Sample preparation 
Fresh stems and leaves of Allium obliquum, A. senescens subsp. 

montanum, A. schoenoprasum, A. fistulosum, leaves of A. ursinum and flowers 
of A. ursinum were crushed and then extracted with ethanol 70% by repercolation 
method at room temperature (“R” extracts). In order to observe the influence of 
the temperature on the allicin extraction it were also performed extractions by 
heating the mixtures at 60˚C on water bath for 30 min (“C” extracts). All extracts 
were filtered and adjusted up to the final volume. All plants were identified 
and voucher specimen (CL 659564, CL 659563, CL 659561, CL 659761 
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and CL 659750) was deposited at the Herbarium of “A. Borza” Botanical 
Garden, “Babes-Bolyai” University of Cluj-Napoca. Before analysis, the vegetal 
extracts were diluted 10 folds with distilled water, then 1 µL was injected in 
the chromatographic system. 

 

Method validation  
In three different days, a calibration curve was run. The linearity of the 

peak area against standard concentration was verified between 18-864 µg/mL 
ALC by applying least-squares linear regression. The applied calibration model 
was y = a*x+b, 1/y weight, where y is peak area and x, concentration. 
Distribution of the residuals (% difference of the back-calculated concentration 
from the nominal concentration) was investigated. The calibration model was 
accepted if the residuals were within ±20% at the lower limit of quantification 
and within ±15% at all other calibration levels and at least 2/3 of the standards 
meet this criterion [13-15]. The limit of quantification was established as the 
lowest calibration standard with an accuracy and precision less than 20%.  
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RAPID LC/MS3 METHOD FOR DETERMINATION OF  
MEMANTINE IN PIG PLASMA 

 
 

LAURIAN VLASEa, DANA MUNTEANa, MARCELA ACHIMa 
 
 

ABSTRACT. A simple and sensitive liquid chromatography coupled with 
tandem mass spectrometry (LC/MS3) method for the quantification of memantine 
in pig plasma was developed and validated. The separation was performed on 
a Zorbax SB-C18 column under isocratic conditions using a mobile phase of 
55:45 (v/v) methanol and 0.1% (v/v) formic acid in water at 45 ºC with a flow 
rate of 1 mL/min. The detection of memantine was performed in multiple reaction 
monitoring mode using an ion trap mass spectrometer with electrospray positive 
ionisation, operating in MS3 mode. The pig plasma samples (0.2 mL) were 
deproteinized with 6% perchloric acid in water and aliquots of 10 μL from 
supernatants obtained after centrifugation were directly injected into the 
chromatographic system. The method shows a good linearity (r > 0.995), 
precision (CV < 12.2%) and accuracy (bias < 12.1%) over the range of 4.86-
486 ng/mL plasma. The lower limit of quantification (LLOQ) was 4.86 ng/mL 
and the recovery was between 92.5-100.8%. The developed and validated 
method is simple, rapid and specific for the determination of memantine in 
pig plasma and was successfully applied to a pharmacokinetic study of 
intravenously administered memantine in pigs.  

 
Keywords: memantine, LC/MS3, human plasma, pig plasma 

 
 
INTRODUCTION 

 

Memantine, 3,5-dimethyladamantan-1-amine (Figure 1) is a N-methyl-D-
aspartate (NMDA) receptor antagonist with neuroprotective effect and is 
currently used for treating of patients with vascular dementia, Alzheimer 
disease, hemorrhagic stroke and neuropathic pain [1-3].  

The process of neuronal degradation in cases of deprived oxygen 
supply (ischemia), as in cardiac arrest, is closely connected with the activity 
of the NMDA receptors [1]. Despite recent acquisition regarding neuronal 
vulnerability to hypoxia, at the moment the only clinically available mean of 
neuroprotection is the therapeutic hypothermia, but this method has limited 
applicability [4]. The similar mechanisms of neuronal injury in Alzheimer disease 
and in cerebral ischemia suggested the idea of potentially neuroprotective 
effects of intravenous memantine administered during global cerebral ischemia 
due experimentally induced cardiac arrest in pigs. In order to evaluate the 
pharmacological effect of memantine in induced cerebral ischemia and for 
evaluation of its pharmacokinetics, a fast and reliable analytical method for 
determination of memantine in pig plasma was needed.  
                                                 
a University of Medicine and Pharmacy “Iuliu Haţieganu”, Faculty of Pharmacy, Emil Isac 13, 

RO-400023, Cluj-Napoca, Romania, * vlaselaur@yahoo.com 
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Figure 1. Chemical structure of memantine 

 
Several methods involving gas-chromatography (GC) coupled with mass 

spectrometry (MS) [5] and high-performance liquid-chromatography (LC) with 
mass spectrometry (MS) [6-10] detection have been reported for determination 
of memantine in biological matrix. 

The GC method requires derivatisation of memantine after liquid-liquid 
extraction (LLE) in order to transform it in a volatile molecule [5]. However, 
both extraction and derivatization are time-consuming steps, increasing the cost 
of assay and can affect the recovery. The LC/MS or LC/MS/MS methods offer 
considerable advantages by their powerful performances: speed, selectivity, 
sensitivity and robustness. However, the sample preparation procedure by 
solid phase extraction (SPE) [6] or LLE [7-9] may complicate the analysis in 
terms of speed and recovery.  

The aim of this work was to develop and validate a new simple, specific 
and efficient LC/MS3 assay for the quantification of memantine in pig plasma 
for application in a pharmacokinetic study.  

 
RESULTS AND DISCUSSION 

 

Sample preparation 
In LC/MS assays the sensitivity depends on MS detection mode, but the 

method involved in sample preparation may also influence the chromatographic 
background level and can generate matrix suppression effects. Usually an 
extraction step of analyte from matrix prior to analysis (SPE or LLE) has two 
main advantages: sample purification and sample pre-concentration. As stated 
before, the extraction step (either SPE or LLE) is laborious, time consuming 
and usually needs an internal standard to compensate the extraction variability. 
The protein precipitation (PP), as sample processing method is desirable when 
one need a high-throughput analysis, and low sample-to sample extraction 
variability. However, the two main advantages of SPE or LLE extraction 
mentioned before become drawbacks in case of PP: first- the sample is not 
really purified so matrix interferences or high background noise may appear; 
and second - the sample is physically diluted during precipitation, lowering the 
method sensitivity. Thus, the working parameters in developing an analytical 
method are related to the performance needed: the sample preparation time 
and costs, the method speed and sensitivity.  

Although after oral administration of memantine in humans, its maximum 
plasma levels are about 15-25 ng/ml [6-9], after intravenous administration (IV) 
in pigs the maximum plasma levels of memantine are much higher, about 



RAPID LC/MS3 METHOD FOR DETERMINATION OF MEMANTINE IN PIG PLASMA 
 
 

 307 

400 ng/mL (pilot study, unpublished data). In that case the calibration curve 
range was adapted to the concentration range of the samples to be analyzed, 
in our case 4.86-486 ng/ml. Because the current assay does not require a high 
sensitivity as in human pharmacokinetic studies, the PP extraction method 
becomes an attracting alternative to SPE or LLE due the high speed and 
the high reproducibility of the extraction.  

 
Table 1. Analytical characteristics of reported LC/MS and LC/MS/MS methods  

for the determination of memantine in biological matrix 
 

Matrix Pre-
treatment/ 
extractiona 

Mobile phase 
constituentsb  

Detection 
modec 

LOQd 

(ng/mL)
Run time 

(min) 
Reference 

Human 
plasma 

SPE ACN - 
ammonium 

acetate buffer  

ESI-MS/MS, 
SRM (m/z 
180→163) 

0.2  2  6  

Human 
plasma 

LLE MeOH- formic 
acid 

in water  

APCI-MS SIM, 
m/z 180 

0.2 L 6  7  

Human 
plasma 

LLE MeOH– formic 
acid 

in water 

ESI-MS/MS, 
SRM (m/z 
180→163) 

0.1  2  8  

Human 
plasma 

LLE MeOH– formic 
acid 

in water 

ESI-MS/MS, 
SRM (m/z 
180→107) 

0.1  4  9  

Rat 
plasma 

Cloud point 
extraction 

MeOH– formic 
acid 

in water 

APCI-MS SIM, 
m/z 180 

2  6  10  

a SPE, solid-phase extraction; LLE, liquid–liquid extraction;  
b ACN, acetonitrile; MeOH, methanol;  
c ESI, electrospray ionisation; APCI, atmospheric pressure chemical ionisation; SIM, selected ion 

monitoring; SRM, selected reaction monitoring;  
d LOQ, limit of quantification 
 

In our method we analysed volumes of only 0.2 mL plasma by PP with 
7% perchloric acid (0.1 mL) and direct injection into the chromatographic 
system from supernatant after centrifugation. We obtained a sensitivity 
corresponding to our needs (LLOQ of 4.86 ng/mL) and absolute recoveries 
between 92.5-100.8%, this being the first analytical method using the PP as 
plasma preparation procedure. 

 
LC-MS assay 
The analyte detection was optimized in several trials to achieve maximum 

sensitivity and specificity. The memantine is ionized in ESI source by proton 
addition, giving a pseudo-molecular ion with m/z 180. After fragmentation, the 
protonated memantine looses an ammonia molecule (MW 17 amu) and is 
converted to ion with m/z 163 (Figure 2). However, although in MS2 mode 
the method specificity is increased in comparison with MS1 mode, the M-17 
transition is not specific. The reason is that fragmentation of ions occurs in fact 
in a narrow window of about 2 amu around the selected mass, so in case of 
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memantine the entire range of m/z 180±2 ions are prone to collision-induced 
dissociation processes. In that case all the ions in that range having a loss 
of 16 amu (methane), 17 amu (ammonia) and 18 amu (water) may interfere 
the analysis. 

In order to obtain the needed specificity of analysis and a maximum 
signal-to-noise ratio (S/N) of analyte, we used the capability of Ion Trap 
mass spectrometer to do multiple stages isolation-fragmentation processes, 
that means MSn analysis. This feature is specific to Ion Trap MS analyzers, 
other MS systems (single quadrupole, triple quadrupole, time of flight) don’t 
have that capability. Thus, in a MS3 stage the ion with m/z 163 obtained in 
the MS2 stage was further fragmented and the obtained mass spectra was 
recorded (Figure 2). The obtained ions with m/z 107, 121 and 135 are specific 
to memantine and were used for quantification. 

 

 
Figure 2. MS spectra of memantine – MS1 spectra (upper image),  

MS2 spectra (middle image) and MS3 spectra (lower image) 
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Comparative chromatograms of memantine detected in MS1, MS2 
and MS3 mode are presented in Figure 3. By using MS3 detection mode, due 
to high specificity, the overall method sensitivity is increased about 6 times 
in comparison with MS1 detection. 

The detection of memantine was carried out in multiple reaction 
monitoring (MRM). The extracted ion chromatogram (EIC) of m/z (107, 121, 
135) from m/z 180 was analyzed. In the selected chromatographic conditions 
the retention time of memantine was 1.95 min.  

 

 
 

Figure 3. Chromatograms of memantine, same concentration, different MS detection 
modes: MS1 (upper image), MS2 (middle image) and MS3 (lower image). In insert, the 

typical background noise pattern for each case, in absolute scale (ion abundance)  
 
 
Assay validation 
The method was validated in accordance with international regulations 

[11,12]. A representative chromatogram of pig plasma spiked with memantine 
at LLOQ is shown in Figure 4. No interfering peaks from the endogenous 
plasma components were observed at the retention time of memantine. 

The calibration curves were linear over the concentration range of 
4.86 – 486 ng/mL in pig plasma, with a correlation coefficient greater than 
0.995. The LLOQ was 4.86 ng/mL. The values obtained for intra-day and inter-
day precision and accuracy during the validation are shown in Tables 2 and 3, 
respectively. All values for accuracy and precision were within guidelines 
recommended limits (<15%) [11,12]. The absolute recovery values were 
between 92.5-100.8%.  
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Figure 4. Representative chromatogram of pig plasma sample spiked with memantine 

at lower limit of quantification (4.86 ng/ml) (retention time – 1.95 min) 
 

Table 2. Intra-day precision, accuracy and recovery (n = 5) for memantine 

cnominal  
ng/mL 

Mean cfound  
ng/mL  
(± S.D.) 

CV % Bias % Recovery %   
(± S.D.) 

4.86 4.73±0.58 12.2 -2.5 97.1±8.3 
14.57 16.32±0.49 3.0 12.1 100.0±2.6 
97.10 92.06±3.49 3.8 -5.2 96.2±3.3 

194.20 178.85±6.73 3.8 -7.9 92.5±2.9 
 

Table 3. Inter-day precision, accuracy and recovery (n = 5) for memantine 

cnominal  
ng/mL 

Mean cfound  
ng/mL  
(± S.D.) 

CV % Bias % Recovery %   
(± S.D.) 

4.86 4.94±0.37 7.5 1.7 100.0±5.7 
14.57 16.09±0.66 4.1 10.5 100.8±6.5 
97.10 96.05±3.52 3.7 -1.1 99.8±7.3 

194.20 180.09±11.42 6.3 -7.3 98.1±7.7 
 

Method application 
The validated method for determination of memantine in pig plasma was 

successfully applied in a pharmacokinetic study of intravenously administered 
memantine in pigs. 

 
CONCLUSION 
 

Our developed LC/MS3 assay is simple, rapid, specific, accurate and 
not expensive. This is the first published analytical method for analysis of 
memantine in biological matrix using protein precipitation as plasma processing 
method. This new fast and specific method was successfully applied in a 
pharmacokinetic study of intravenously administered memantine in pigs. 
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EXPERIMENTAL SECTION 
 

Reagents 
 Memantine was reference standard from USP (Rockville, MD, USA). 
Methanol of gradient grade for liquid chromatography, formic acid and 70% 
perchloric acid of analytical-reagent grade were purchased from Merck KGaA 
(Darmstadt, Germany). Bidistilled, deionised water pro injections was purchased 
from Infusion Solution Laboratory of University of Medicine and Pharmacy Cluj-
Napoca (Romania). The pig blank plasma was from drug-untreated pigs. 

 

Apparatus 
The following apparatus were used: 204 Sigma Centrifuge (Osterode 

am Harz, Germany); Analytical Plus and Precision Standard Balance (Mettler-
Toledo, Switzerland); Vortex Genie 2 mixer (Scientific Industries, New York, 
USA); Ultrasonic bath Elma Transsonic 700/H (Singen, Germany). The HPLC 
system used was an 1100 series Agilent Technologies model (Darmstadt, 
Germany) consisting of one G1312A binary pump, an in-line G1379A degasser, 
an G1329A autosampler, a G1316A column oven and an Agilent Ion Trap 
Detector 1100 SL. 

 

Chromatographic and spectrometric conditions 
Chromatographic separation was performed on a Zorbax SB-C18 

(100 mm x 3.0 mm i.d., 3.5 μm) column (Agilent Technologies) under isocratic 
conditions using a mobile phase of a 55:45 (v/v) mixture of methanol and 
0.1% (v/v) formic acid in water at 45 ºC with a flow rate of 1 mL/min. In order to 
maintain the ESI source clean,  the column effluent was diverted to waste 
for the first 1.5 minutes after injection. The detection of memantine was 
performed in multiple reaction monitoring (MRM) mode using an ion trap 
mass spectrometer with an electrospray ion (ESI) source, positive ionisation 
(capillary 3500 V, nebulizer 60 psi (nitrogen), dry gas nitrogen at 12 L/min, dry 
gas temperature 350ºC). The extracted ion chromatogram (EIC) of m/z (107, 
121, 135) from m/z 163 from m/z 180 was analyzed (MS3 mode). 

 

Standard solutions   
A stock solution of memantine (0.971 mg/mL) was prepared by 

dissolving an appropriate quantity of memantine in methanol. Two working 
solutions (19.42 μg/mL and 486 ng/mL, respectively) were prepared by 
appropriate dilution in drug-free pig plasma. These solutions were used to 
prepare eight plasma calibration standards with the concentrations between 
4.86 and 486 ng/mL, respectively. Quality control (QC) samples of 14.6 ng/mL 
(lower), 97.1 ng/mL (medium) and 194.2 ng/mL (higher) were prepared by 
adding the appropriate volumes of working solutions to drug-free pig plasma.  
 

Sample preparation 
Standards and plasma samples (0.2 mL) were deproteinized with a 

7% perchloric acid aqueous solution (0.1 mL). After vortex-mixture (10 s) 
and centrifugation (3 min at 12000 rpm), the supernatants (0.15 mL) were 
transferred in autosampler vials and 10 μL were injected into the HPLC system. 
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Method validation 
The specificity of the method was evaluated by comparing the 

chromatograms obtained from the plasma samples containing memantine 
with those obtained from plasma blank samples.  

The concentration of memantine was determined automatically by 
the instrument data system using peak areas and the external standard 
method. The calibration curve model was determined by the least squares 
analysis: y = b + ax, weighted (1/y) linear regression, where y - peak area 
of the analyte and x - concentration of the analyte (ng/mL).  

The intra-day precision (expressed as coefficient of variation, CV %) 
and accuracy (expressed as relative difference between obtained and theoretical 
concentration, bias %) were determined by analysis of five different samples 
(n = 5) from each QC standards (at lower, medium and higher levels) on the same 
day. The inter-day precision and accuracy were determined by analysis on five 
different days (n = 5) of one sample from each QC standards (at lower, medium 
and higher levels). The lower limit of quantification (LLOQ) was established as the 
lowest calibration standard with an accuracy and precision less than 20%. The 
relative recoveries (at LLOQ, lower, medium and higher levels) were measured 
by comparing the response of the spiked plasma with the response of standards 
in solvent with the same concentration of memantine as the plasma (n = 5) [11-15].  
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CISPLATIN EFFECT ON HEMOGLOBIN AND MYOGLOBIN 
AUTOOXIDATION 

 
 
CRISTINA BISCHINa, VICENTIU TACIUCa, RADU SILAGHI-DUMITRESCU*a 

 
 

ABSTRACT. It has previously been shown using mass-spectrometry that 
therapeutically-useful platinum-based compounds of the cisplatin family bind to 
a range of proteins, including hemoglobin and cytochrome c. On the other hand, 
currently available data suggests that the medically-relevant chemical properties 
of hemoglobin are in no significant way affected by Pt-based drugs, within the 
concentration ranges attainable during treatment of a patient. Here, cisplatin is 
shown to modulate two physiological parameters of hemoglobin and myoglobin - 
autooxidation and oxygen dissociation rate, as measured by UV-vis aspectra. 
The extent, to which these changes in reactivity impact the side-effects and even 
the therapeutic mechanisms of these drugs, appears to deserve further attention. 
 

Keywords: hemoglobin, cytochrome c, cisplatin, autooxidation  
 

INTRODUCTION  
Cisplatin and related compounds are known to exert much of their 

useful therapeutic effects via binding to DNA.[1] The need for more effective 
drugs as well as the wide range of side-effects (nausea, progressive peripheral 
sensory neuropathy, fatigue, vomiting, alopecia, hematological suppression, renal 
damage) have, for several decades now, fuelled interest into understanding 
the complex mechanisms of interaction of cisplatin and related compounds with 
various biomolecules.[2,3] One notable observation in this respect has been 
that platinum can bind to a range of proteins, as demonstrated by elemental 
analyses, chromatography and mass spectrometry.[3,4] With such methods, 
cisplatin–Hb complexes were shown to be formed using clinically relevant 
concentrations of cisplatin and Hb. The interaction of oxaliplatin and carboplatin 
with hemoglobin was also studied with nanoelectrospray ionization quadrupole 
time-of-flight mass spectrometry (nanoESI-QTOF-MS) and size-exclusion high 
performance liquid chromatography/inductively coupled plasma mass spectrometry 
(HPLC/ICPMS) [5], showing similar results to those obtained with cisplatin; 
heme release was a noted side effect of platinum binding. Cisplatin-derived 
platinum was also found bound to cytochrome, with a preference for the iron 
ligand Met 65.[6] 

Hb is present in high concentrations in blood and is particularly sensitive 
to changes in redox status, to the extent that under stress conditions such as 
physical effort or certain pathological conditions it engages in toxic reactions 
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with oxidative stress agents- primarily peroxide – yielding free radicals and highly-
oxidizing states at the iron (ferryl, Compound II).[7-10] As such, it may be 
expected that Hb might be sensitive to the stress imposed by cisplatin in 
patients; indeed, in a preliminary report we have shown that the autooxidation 
rate of hemoglobin is affected by cisplatin and related compounds.[11] 
Cytochrome c not only serves as key component of the electron transport 
chain, but is also involved, most likely via redox reactions once again linked to 
peroxides, in the apoptosis process and as such would appear as a sensitive 
target for exogenous compounds such as cisplatin.[12-14] Here, data is shown 
establishing a link between previously-demonstrated binding of platinum to 
hemoglobin and myoglobin, and their reactivity towards dioxygen with possible 
relevance to the in vivo reactions of platinum-based drugs 
 
RESULTS AND DISCUSSION 

 

Table 1 illustrates that, in agreement with a previous preliminary 
report,[11] cisplatin enhances the rate of autooxidation of hemoglobin, as 
measured under two different conditions – at 37ºC in pH 7.4 buffer or at 
room temperature under acceleration by guanidinium hydrochloride. The 
latter procedure is interpreted to effectively probe the stability of the protein: 
binding of platinum to the protein surface (previously proven by others using 
mass spectrometry [5]) is expected to affect the local mobility of the protein 
side-chains and hence the stability of the tertiary structure. As seen in Table 1, 
guanidine accelerates autooxidation; this is proposed to be due to partial 
denaturation of the protein induced by guanidine, which would result in opening 
the heme site towards solvent. Indeed, solvent accessibility and polarity at the 
metal site is a key parameter dictating autooxidation parameters in dioxygen 
carriers.[15] Under these conditions, it was expected that in the presence of 
guanidine the Pt-treated Hb would show slightly increased autooxidation – as 
confirmed by the data in Table 1. One may note, from a methodological point of 
view, that our approach of measuring globin autooxidation rate in the presence 
of a controlled amount of guanidine offers the advantage of measuring this rate 
somewhat faster than traditionally done at 37ºC in phosphate buffer saline. 
While the absolute values obtained for autooxidation in the presence of guanidine 
at room temperature (shown in Table 1) lack direct physiological relevance, 
they do allow for a faster way of assessing the effect of exogenous factors on 
the autooxidation rate and on stability in general - such as exemplified here 
by the cisplatin case. Indeed, while traditional measurements of autooxidation 
rates in dioxygen-carrying proteins, done at 37ºC and in PBS, may take several 
hours, the guanidine procedure requires no incubation and can be controlled, 
by choosing the appropriate guanidine concentrations, to proceed in only a 
few minutes. 

Table 2 illustrates that cisplatin affects the rate of dioxygen dissociation 
from the hemoglobin ferrous heme (koff). The 14-26% decreases brought by 
cisplatin compared to native Hb may be interpreted to suggest slightly reduced 
mobility of protein side-chains controlling dioxygen liberation. With myoglobin 
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the koff rate was affected somewhat similar to hemoglobin (data not shown). 
Figure 1 illustrates UV-vis spectra collected during data collection for koff  
measurements. 

 
 

Table 1. The effect of cisplatin on Hb and Mb autooxidation rate as induced by 
temperature or by 2.5 M guanidine. Percentage increases or decreases relative  
to values seen for the respective proteins in the absence of cisplatin are shown. 

 
 

 Hb (%) Mb (%) 
100 μM Pt  + 2 (±1)  +6  (±1) 
300 μM Pt + 34 (± 1) +11 (±6) 
30 μM Pt, guanidine +48 (± 13)  
100 μM Pt, guanidine +13 (± 5)  
300 μM Pt, guanidine +33 (± 1)  
500 μM Pt, guanidine +36 (± 1)  

 
 

Table 2. Effect of cisplatin on the dissociation rate of dioxygen from oxy-Hb. 
Percentage increases or decreases relative to values seen  

for Hb in the absence of cisplatin are shown. 
 
 

 koff 
Hb, 200 μM Pt, inc -23%±0.1 
Hb, 200 μM Pt, non-inc -26%±0.1 
Hb, 400 μM Pt, inc 24 h (mM) -14%+0.1 
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cisplatin, 200 µM
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Figure 1. UV-vis spectra collected during a stopped-flow experiment where oxy-
hemoglobin (14 μM) was mixed with dithionite (20 mM) in order to monitor the 
transition from the oxy to the deoxy state, in the presence or absence of 200 μM 
cisplatin. Spectra were collected every 13 ms for the first 2 seconds after mixing; 
arrows indicate the directions in which absorbance changes at various wavelengths. 
 
 

CONCLUSIONS 
 

Cisplatin affects the autooxidation rate and the oxygen dissociation 
rate in hemoglobin, more so than in myoglobin. The rate of dissociation of 
molecular oxygen from ferrous hemoglobin is, by contrast, slightly lowered 
by cisplatin. Together, these findings suggest that cisplatin is likely to limit the 
dioxygen-delivering abilities of hemoglobin. This is proposed to originate in 
a decrease in flexibility of the protein, as a result of platinum binding to the 
surface aminoacids. It remains to be established to what extent these findings 
have a clinically-relevant outcome. 
 
METHODS 

 

Bovine hemoglobin was purified from bovine blood as previously 
described.[16] Thus, the blood, freshly drawn on citrate, was centrifuged 15 
minutes at 5000 rpm to separate the red blood cells, which were then washed 
three times with 5 mM phosphate pH 7.4 + 150 mM NaCl. Hemoglobin 
concentrations in text are given per heme rather than per tetramer. The met 
forms of the hemoglobins were prepared by ferricyanide treatment as previously 
described.[17-19] Where needed, guanidinium hydrochloride was added to 
reaction mixtures from 6 M stock solutions. 

UV-vis spectra were recorded on Agilent 8453 (Agilent, Inc.) and Cary 
50 (Varian, Inc) instruments. Stopped-flow spectra were collected on a Biologic 
SFM-300 system equipped with 3 syringes and capable of sequential mixing, 
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with a high-speed diode array detector. Stopped-flow data were analyzed within 
the SPECFIT32 software package (BioLogic Science Instruments, France) 
using Singular Value Decomposition (SVD) and global multiexponential fitting 
of the SVD treated data, with the spectra fitted to simple kinetic models using 
Levenberg-Marquardt or Simplex algorithms. 

Autooxidation rates were measured at 37° C in PBS. Optionally, 
prior to measurements the samples were incubated at 4ºC overnight, with 
physiological serum (control sample) or with cisplatin dissolved in physiological 
serum at concentrations indicated in the Table 1. Alternatively, autooxidation 
measurements were measured at room temperature in the presence of 2.5 M 
guanidine, in which case pre-incubation with cisplatin did not affect the result. 
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CENTRIC CONNECTIVITY INDEX 
 
 

MIRCEA V. DIUDEA* 

 
 

ABSTRACT. Relative centricity RC values of vertices/atoms are calculated 
within the Distance and Cluj-Distance criteria. The vertex RC distribution in 
a molecular graph provides atom equivalence classes, useful in interpretation 
of NMR spectra. Timed by vertex valences, RC provides a new index, called 
Centric Connectivity CC, which can be useful in topological characterization of 
graphs and in QSAR/QSPR studies. 
 
Keywords: graph theory, Cluj index, relative centricity, centric connectivity index 

 
 
 
INTRODUCTION 
 

 Let G = (V, E) be a connected graph, with no multiple bonds and loops. V 
is the set of vertices and E is the set of edges in G; | ( ) |v V G=  and | ( ) |e E G=  
are their cardinalities. 

A walk w is an alternating string of vertices and edges: w1,n = (v1, e1, v2, e2, 
..., vn-1, em, vn), with the property that any subsequent pair of vertices represent an 
edge: (vi-1, vi) ∈ E(G). Revisiting of vertices and edges is allowed [1-6]. 

The length of a walk, l(w1,n) =⏐E(w1,n)⏐equals the number of its traversed 
edges. In the above relation E(w1,n) is the edge set of the walk w1,n . The walk 
is closed if v1 = vn and is open otherwise [3,5].  

A path p is a walk having all its vertices and edges distinct: vi ≠ vj, 
(vi-1, vi) ≠ (vj-1, vj) for any 1 ≤ i < j ≤ n. As a consequence, revisiting of 
vertices and edges, as well as branching, is prohibited. The length of a path 
is l(p1,n ) = ⏐E(p1,n)⏐ = ⏐V(p1,n )⏐- 1, with V(p1,n ) being the vertex set of the 
path p1,n . A closed path is a cycle ( i.e., circuit).  

A path is Hamiltonian if all the vertices in G are visited at most once:  
n = |V(G)|. If such a path is closed, then it is a Hamiltonian circuit.  

The distance dij is the length of a shortest path joining vertices vi and vj: 
dij = min l(pij);  otherwise dij = ∞. The set of all distances (i.e., geodesics) in 
G is denoted by DI(G).  

The detour δij is the length of a longest path between vertices vi and vj:  
δij = max l( pij); otherwise δij = ∞. The set of all detours in G is denoted by DE(G). 

The square arrays that collect the distances and detours, in G are 
called  the Distance DI and Detour DE matrix, respectively [3,5]:   

[ ] ,
,

min ( ), if
( )

0 if
i j

i j
l p i j

G
i j

≠⎧⎪= ⎨
=⎪⎩

DI     (1) 
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,
,

max ( ),
| ( ) |

0
i j

i j

l p if i j
G

if i j

≠⎧
= ⎨

=⎩
DE        (2) 

 In words, these matrices collect the number of edges separating the 
vertices i and j on the shortest and longest path pi,,j, respectively. The half 
sum of entries in the Distance and Detour matrices provide the well-known 
Wiener index W [7] and its analogue, the detour number w [8,9]. 

The Cluj fragments are sets of vertices obeying the relation [3,5,10-13]: 

{ }),(),();( )()(,, vjDviDGVvvCJ pGpGpji −− <∈=      (3) 
The entries in the Cluj matrix UCJ are taken, by definition, as the 

maximum cardinality among all such fragments: 
pj,i,

p
CJmax=

ji,
[UCJ]         (4) 

It is because, in graphs containing rings, more than one path can join 
the pair (i, j), thus resulting more than one fragment related to i (with respect to 
j and path p).  

The Cluj matrix is defined by using either distances or detours [14]: 
when path p belongs to the set of distances DI(G), the suffix DI is added to 
the name of matrix, as in UCJDI. When path p belongs to the set of detours 
DE(G), the suffix is DE.  
 Two graphs are called isomorphic, G ≈ G', if there exists a mapping  
f : V → V' that preserves adjacency (i.e., if (i,j)∈ E(G), then (f (i), f (j))∈ E'(G’)). 
The function f provides a one-to-one correspondence between the vertices 
of the two sets. The isomorphism of G with itself is called an automorphism. It 
is demonstrated that all the automorphisms of G form a group, Aut(G) [3,5]. 

The symmetry of a graph is often called a topological symmetry; it is 
defined in terms of connectivity, as a constitutive principle of molecules and 
expresses equivalence relationships among elements of the graph: vertices, 
bonds, faces or larger subgraphs. The topological symmetry does not fully 
determine molecular geometry and it does not need to be the same as (i.e., 
isomorphic to) the molecular point group symmetry. However, it represents the 
maximal symmetry which the geometrical realization of a given topological 
structure may posses [15-17].  

Given a graph G=(V,E) and a group Aut(G), two vertices, i, j∈V are called 
equivalent if there is a group element, aut(vi)∈Aut(G), such that j aut(vi) i. The 
set of all vertices j (obeying the equivalence relation) is called the i’s class of 
equivalence. Two vertices i and j, showing the same vertex invariant Ini=Inj  belong 
to the same invariant class IC. The process of vertex partitioning in IC-s leads to m 
classes, with v1, v2,...vm vertices in each class. Note that invariant-based partitioning 
may differ from the orbits of automorphism since no vertex invariant is known 
so far to discriminate two non-equivalent vertices in any graph [3,5].  

In the chemical field, the isomorphism search could answer to the 
question if two molecular graphs represent or not one and the same chemical 
compound. Two isomorphic graphs will show the same topological indices, so 
that they cannot be distinguished by topological descriptors. 
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CENTRIC CONNECTIVITY CC INDEX 
 

In studies on the centrality/centricity of graphs, Bonchev et al. [18,19] 
have proposed the distance-based criteria 1D-3D as follows: 
 1D: minimum vertex eccentricity:   min ecci  
 2D: minimum vertex distance sum:  min DISi 

3D: minimum number of occurrence of the largest distance:  
min [LM, ShM]i,j max 

 When applied hierarchically, the above criteria lead to the center(s) 
of a graph.  

Our older centrality index C(LM, ShM) is a function also giving the graph 
center(s), used alone or within the MOLORD algorithm [20]. In the above, LM, 
ShM denote the layer matrix and the shell matrix (of a given square info-
matrix M), defined as follows [21-23]. 

The entries in the layer matrix (of vertex property) LM, are 

[ ]
,

,
i v

i k v
v d k

p
=

= ΣLM       (5) 

 Layer matrix is a collection of the above defined entries: 
{ },( ) [ ] ; ( ); [0,1,.., ( )]i kG i V G k d G= ∈ ∈LM LM   (6) 

with d(G) being the diameter of the graph (i.e., the largest distance in G). 
Any atomic/vertex property can be considered as pi. More over, any square 
matrix M can be taken as info matrix, i.e., the matrix supplying local/vertex 
properties as row sum RS, column sum CS. The zero column is just the 
column of vertex properties [ ] ii p=0,LM . When the vertex property is 1 (i.e., 
the counting property), the LM matrix will be LC (the Layer matrix of Counting). 

Define the entries in the shell matrix ShM (of pair vertex property) as [23] 

[ ]
,

, ,[ ]
i v

i k i v
v d k=

= ΣShM M     (7) 

The shell matrix is a collection of the above defined entries: 

{ },( ) [ ] ; V( ); [0,1,.., ( )]i kG i G k d G= ∈ ∈ShM ShM   (8) 
A shell matrix ShM(G), will partition the entries of the square matrix 

according to the vertex (distance) partitions in the graph. It represents a true 
decomposition of the property collected by the info square matrix according 
to the contributions brought by pair vertices pertaining to shells located at 
distance k around each vertex. The zero column entries [ ] ,0iShM are just 
the diagonal entries in the info matrix.  

In this paper, the distance-based functions, expressing the topology 
related to the center of the graph, are as follows: 

( ) ( ) ; 1, 2,... ( ); 1, 2,..n
kk

EP i P i k k d G n= ⋅ = =∑   (9) 
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,( ) [ , ]k i kP i = LM ShM       (10) 
1( ) ( ( ))C i EP i −=       (11) 

max min/( ) ( ) ( ) = ( ) / ( )RC i C i C i EP i EP i=    (12) 

( ) ( )
i

RC G RC i=∑       (13) 
( ) ( ) ( )CC i RC i d i= ⋅       (14) 
( ) ( )

i
CC G CC i=∑       (15) 
The distance-extension of the property P(i) (collected in LM or ShM, (10)) 

is made by a variable power function, depending of the info matrix M, to 
ensure the separation of the resulting values, of which meaning is that of an 
eccentric property EP(i) (9). There is a clear difference between EP(i) and 
the eccentricity ( )iε  (counting the largest topological distance from i to any other 
vertex in G), used in the construction of “Eccentric Connectivity index” [24]. 
The vertex centricity C(i) (11) is then calculated in the sense of the Bonchev’s 
1D-3D criteria, by virtue of the involved LM, ShM matrices.  

The relative centricity (or centrality) RC(i) (12) accounts for the deviation 
to the maximum centrality, equaling 1 in case of vertices being centers of 
the graph. The global value RC(G) (13) is useful in characterizing the distribution 
of the centricity function (11), particularly when normalized by the number 
of vertices of G.  

Finally, the centric connectivity CC index (14,15) is hoped to be useful 
in QSAR/QSPR studies, their values being of the same order of magnitude 
as the number of vertices/atoms in the molecular graph. Relation (14) can be 
generalized by changing d(i) by the “remote” degree [5,25] or by degrees of 
“extended connectivity” [26-30].  

Tables 1 and 2 exemplify the above formulas for the molecular graphs 
illustrated in Figure 1. The sum in the EP(i) column gives twice the Wiener index 
[7]. Note that G2 (Table 1) is a self-centered graph [31], of which all vertices 
are centers of the graph, as ranked by the RC(i) column. Also note that  G2 is a 
full Hamiltonian detour graph [14]; this means that all its detours are 
Hamiltonian path, visiting once all the vertices of the graph. 

The invariant classes of equivalence IC-s are given at the bottom of 
tables, by their population Pop (no. of vertices in each class). IC-s are important 
in NMR spectra interpretation. 

  
G1 G2 G3 G4 

Figure 1. G1 (v=21); G2 (v=16); G3 (v=17); G4 (v=17) 
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Table 1. Vertex eccentric property EP(i), relative centricity RC(i) and centric connectivity 
CC(i) values, calculated on LM=LC matrix (k^1), unless otherwise specified; no. of 

“invariant classes” IC-s, by their population Pop (no. of vertices) for G1 and G2. 
 

 G1  G2 (self-centered graph) 
# EP(i) RC(i) CC(i) d(i) EP(i) RC(i) CC(i) CC(i); (ShCJDI; k^2) 
1 70 0.7714 1.5429 2 33 1 3 2.8385 
2 70 0.7714 1.5429 2 33 1 3 2.9611 
3 70 0.7714 1.5429 2 33 1 3 2.9358 
4 54 1 3 3 33 1 3 2.9358 
5 64 0.8438 2.5313 3 33 1 3 3 
6 74 0.7297 1.4595 2 33 1 3 2.9611 
7 64 0.8438 2.5313 3 33 1 3 2.9358 
8 74 0.7297 1.4595 2 33 1 3 3 
9 64 0.8438 2.5313 3 33 1 3 2.9611 

10 54 1 3 3 33 1 3 2.9358 
11 64 0.8438 2.5313 3 33 1 3 3 
12 54 1 3 3 33 1 3 3 
13 64 0.8438 2.5313 3 33 1 3 2.9358 
14 74 0.7297 1.4595 2 33 1 3 2.9358 
15 64 0.8438 2.5313 3 33 1 3 3 
16 74 0.7297 1.4595 2 33 1 3 3 
17 54 1 3 3 528=2W 16 48=CC 47.3364=CC 
18 54 1 3 3     
19 74 0.7297 1.4595 2     
20 54 1 3 3     
21 74 0.7297 1.4595 2     

Sum 1362=2W 17.7552 46.5728=CC      
Pop   3,(6)3     1,3,(6)2 

 
Table 2. Vertex eccentric property EP(i), relative centricity RC(i) and centric connectivity 
CC(i) values, calculated on ShM=ShUCJDI matrix (k^3); no. of “invariant classes” 

IC-s, by their population Pop (no. of vertices) for G3 and G4; 
 

# G3  G4 
 EP(i) RC(i) CC(i) d(i) EP(i) RC(i) CC(i) d(i) 

1 2478 0.5585 1.1170 2 2483 0.7962 2.3886 3 
2 2478 0.5585 1.1170 2 2483 0.7962 2.3886 3 
3 2044 0.6771 2.7084 4 2483 0.7962 2.3886 3 
4 1384 1 4 4 1977 1 3 3 
5 2044 0.6771 2.7084 4 3322 0.5951 1.1902 2 
6 2478 0.5585 1.1170 2 2982 0.6630 1.3260 2 
7 2478 0.5585 1.1170 2 2483 0.7962 2.3886 3 
8 2044 0.6771 2.7084 4 2982 0.6630 1.3260 2 
9 2478 0.5585 1.1170 2 2483 0.7962 2.3886 3 

10 2478 0.5585 1.1170 2 3322 0.5951 1.1902 2 
11 2044 0.6771 2.7084 4 2483 0.7962 2.3886 3 
12 2478 0.5585 1.1170 2 1977 1 3 3 
13 2478 0.5585 1.1170 2 3322 0.5951 1.1902 2 
14 2478 0.5585 1.1170 2 2982 0.6630 1.3260 2 
15 2478 0.5585 1.1170 2 3322 0.5951 1.1902 2 
16 2478 0.5585 1.1170 2 3322 0.5951 1.1902 2 
17 2478 0.5585 1.1170 2 3322 0.5951 1.1902 2 

Sum 39296 10.4106 28.2380  47730 12.3370 31.4512  
Pop   1,4,12    2,3,(6)2  
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CONCLUSIONS 
 

The relative centricity RC of vertices in a molecular graph were calculated 
within the Distance and Cluj-Distance criteria. The vertex RC distribution in a molecular 
graph gives information on the equivalence classes (as vertex invariant classes) of 
atoms, useful in interpretation of NMR spectra. Timed by vertex valences, RC provides 
an index, called Centric Connectivity CC. This index represents a new descriptor, 
which can be useful in topological characterization of graphs and in QSAR/QSPR 
studies. By definition, there is a clear difference between the Centric Connectivity index 
and the older Eccentric Connectivity index or its newer versions [32-34]. 
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