STEREOSELECTIVE ENZYMATIC SYNTHESIS OF β-AMINO ACID DERIVATIVES

Moisă Mădălina Elena, Paizs Csaba, Toşa Monica Ioana, Irimie Florin Dan
Department of Biochemistry and Biochemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University in Cluj-Napoca, 11 Arany Janos, RO-400028 Cluj-Napoca, Romania e-mail: mmoisa@chem.ubbcluj.ro

β-Amino acids and their derivatives have always been of great interest and importance due to their unique pharmacological properties. Enantiomerically pure β-amino acids not only present broad biological activity but are also building blocks for the synthesis of β-peptides [1] β-lactam antibiotics [2] and many pharmacologically relevant natural products [3,4]. For example, Taxol, Kedarcidin (both antitumor agents), Jasplakinolide (with anthelmintic, insecticidal, antifungal activities) and Elarobifan (an integrin antagonist) represent some of the most popular pharmaceutically interesting compounds containing units of β-amino acids [5].

For these reasons, the development of new strategies for the synthesis of optically pure β-amino acids and their derivatives has received considerable attention as there is a high demand in both academia and industry.

The aim of this study is to synthesize a series of enantiomerically enriched heteroaromatic β-amino acid derivatives through enzymatic kinetic resolution using lipases as chiral catalysts.

The research was supported by a grant of the Romanian National Authority for Scientific Research, CNDI-UEFISCDI, project number PN-II-PT-PCCA-2011-3.1-1268.

References

[1] Lelais, G., Seebach, D. Biopolymers, 76 (2004) 206-243.
[2] Georg, G. I. The Organic Chemistry of β-Lactams, VCH, New York, 1993.
[3] Tang, W., Zhang, X. Org. Lett. 4 (2002) 4159-4161.
[4] Hoekstra, W. J. Ed. The Chemistry and Biology of β-Amino acids, Curr. Med. Chem. 6 (1999) 905-925.
[5] Drexler, H.-J., You, J., Zhang, S., Fischer, C., Baumann, W., Spannenberg, A., Heller,D. Org. Proc. Res. Dev. 7 (2003) 355-361.

