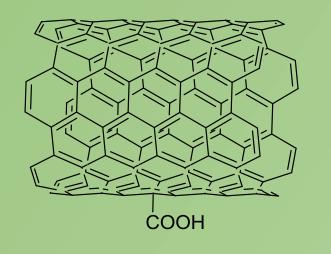
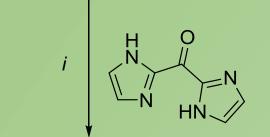


CaL-B Immobilized on Single Walled Carbon Nanotubes as Efficient Biocatalyst for the Kinetic Resolution of 1-(Hetero)aryl -Ethanols

Bartha-Vári J. H.¹, Nagy E. Z.¹, Gal C. A. ¹, Bencze L. C.¹, Toşa M. I.¹, Irimie F. D.¹, Abaházi E.², Poppe L.^{2*}, Paizs C.^{1*}


¹ Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University ² Department of Organic Chemistry and Technology, Budapest University of Technology and Economics E-mail: paizs@chem.ubbcluj.ro, poppe@mail.bme.hu

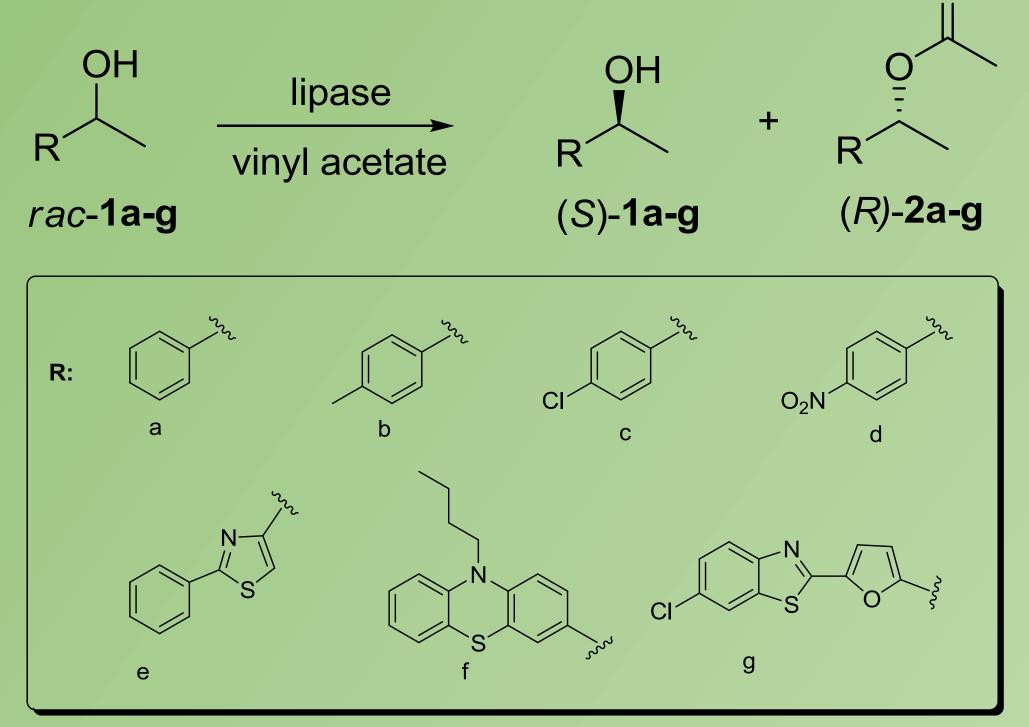

Introduction

Numerous enantiopure heteroaryl alcohols are known for their biological activity, or represent precursors in the synthesis of a large number of pharmaceutical products.¹

An efficient method for the synthesis of enantiopure secondary alcohols is the lipase-catalyzed kinetic resolution of racemic alcohols.

Immobilization can modify and improve properties of enzymes, may enable their recovery and reuse, can provide a favorable environment for the enzymes, may increase their rigidity and may improve their enantioselecivity.²

Carbon nanotubes are widely used for the immobilization of biomacromolecules, due to their mechanical, thermal, electrical properties and general biocompatibility since they can offer a support with large surface area, low diffusion limitation and easy recovery.³

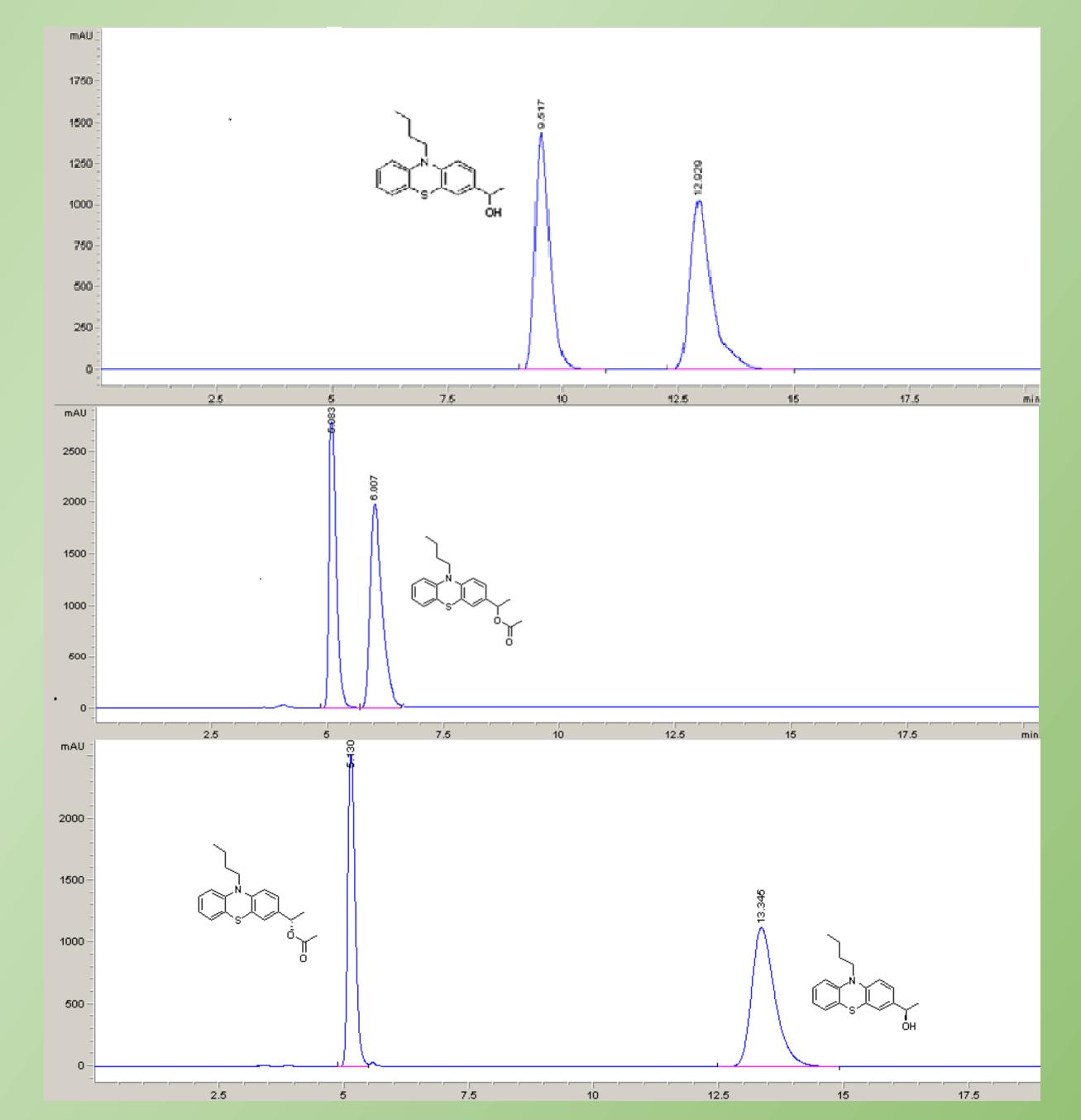

Experimental

commercially available SwCNT_{COOH} was activated with The carbonyldiimidazol, followed by coupling with 1,3-diaminopropane. The SwCNT carrier was further treated with the glycerol diglycidyl ether crosslinker (Scheme 2). Immobilization of the lipase B from Candida antarctica (CaL-B) was carried out in the presence of Tween 80, a nonionic surfactant. Furthermore, the optimal loading of the enzyme on the support material was also tested. The SwCNT_{COOH}CaL-B biocatalyst was used in the kinetic resolution of several secondary alcohols (Scheme 1).

Discussion

The obtained enzyme preparations were characterized by reproducibility and high immobilization yields (>99 % of the enzyme bound to SwCNT_{COOH}). The immobilized lipase showed high enantioselectivity and activity in the enzymatic kinetic resolution of the tested racemic secondary alcohols rac-1a-g (Table 1) in acetonitrile, using vinyl acetate as acyl donor.

Scheme 2. Immobilization of CaL-B on SwCNT_{COOH} i) CDI in CH_2CI_2 ; ii) $H_2N(CH_2)_3NH_2$ in water; iii) glycerol diglycidyl ether in CH_2Cl_2 ; iv) CaL-B in PBS buffer (20 mM Na_2HPO_4 , 150 mM NaCl, pH 7)


Scheme 1. Enzymatic kinetic resolution of racemic alcohols *rac*-**1a-g**. Reactants and solvents: vinyl acetate, SwCNT_{COOH}CaL-B, acetonitrile.

Conclusions

Covalent immobilization of CaL-B on carboxylated single-walled carbon nanotubes after amidation and bisepoxide treatment resulted in a highly efficient and stable biocatalyst which proved to be useful in the kinetic resolution of various secondary alcohols.

Table 1. Enantioselective acylation of *rac*-**1a-g** mediated by SwCNT_{COOH}CaL-B after 36 h (10 mg substrate, 1 mg neat enzyme, 5 µL vinyl acetate, 1 mL acetonitrile).

Substrate	ee _s (%)	ee _p (%)	c (%)	E
<i>rac-</i> 1a	37	>99	27.2	>200
<i>rac</i> - 1b	68	>99	40.6	>200
<i>rac-</i> 1c	49	>99	33.1	>200
<i>rac</i> - 1d	92	>99	48.0	»200
<i>rac-</i> 1e	>99	>99	50	»200
<i>rac-</i> 1f	>99	>99	50	»200
rac- 1g	76	>99	43.1	»200

Selected references

- 1. Brem, J; Toşa, M. I.; Paizs, C.; Munceanu, A,; Matkovic-Calogovic, D; Irimie, F. D. *Tetrahedron: Asymmetry*, **2010**, 1993–1998.
- 2. Mateo, C.; Palomo, J. M.; Fernandez-Lorente, G.; Guisan, J. M.; Fernandez-Lafuente, R. Enzyme Microb. Technol. 2007, 40 (6), 1451-1463.
- 3. Pavlidis, I. V.; Vorhaben, T.; Tsoufis, T.; Rudolf, P.; Bornscheuer, U. T.; Gournis, D.; Stamatis, H. Bioresour. Technol. 2012, 115, 164–171.

Acknowledgements

The research was supported by a grant of the Romanian National Authority for Scientific Research, CNDI-UEFISCDI, project number PN-II-PT-PCCA-2011-3.1-1268. The autors also thank the support from COST Action CM1303 ("Systems Biocatalysis")

Figure 1. Chromatographic separation of the enantiomers of rac-1f and rac-2f; and enantiomeric composition of the products at 50% conversion in SwCNT_{COOH}CaL-B mediated enantiomer selective acylation of *rac*-**1f** with vinyl acetate in acetonitrile.