DIAZINES

1. Typical representatives and symbols

2. Structure

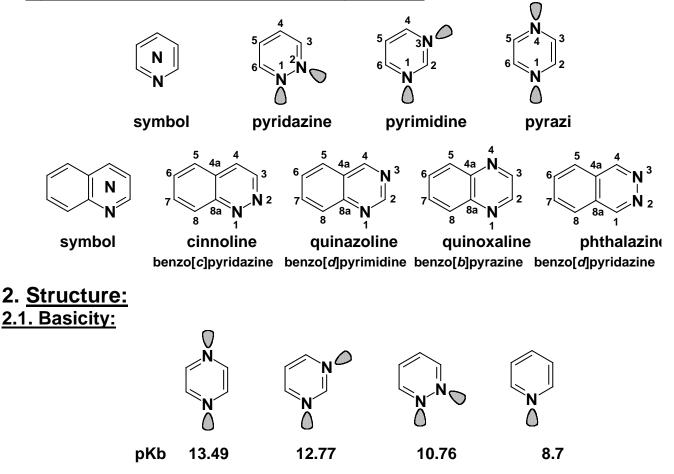
- 2.1. Basicity
- 2.2. Aromaticity
- 2.3. NMR data
- 2.4. Prototropic tautomerism

3. Syntheses

- 3.1. Two aza-atoms in positions 1, 2
- 3.1.1. Monocyclic rings: pyridazines
- 3.1.2. Fused rings: phthalazines
- 3.1.3. Fused rings: cinnolines
 - a) From *o*-substituted diazonium salts
 - b) Friedel & Crafts methodology
 - c) Intramolecular S_N 2Ar nucleophilic substitution

3.2. Two aza-atoms in positions 1, 3

- 3.2.1. Monocyclic rings: pyrimidines
- 3.2.2. Fused rings: quinazolines
- 3.3. Two aza-atoms in positions 1, 4
- 3.3.1. Monocyclic rings: pyrazines
- 3.3.2. Fused rings: quinoxalines


4. Reactivity

- 4.1. Electrophilic substitution
- 4.1.1. At ring nitrogen
- 4.1.2. At ring carbon
- 4.2. Nucleophilic substitution
- 4.2.1. Hydride ion as leaving group
- 4.2.2. Halogen as leaving group
- 4.3. Advanced functionalisation via metallation

Modifications (improvements, additions, corrections, up to dates etc.) are subjected to no notice.

<u>DIAZINES</u>

1. Typical representatives and symbols:

 additional pyridine-like nitrogen strongly decreases basicity (protonation is less tolerated by the previous *N*-atom); more stabilization of the protonated form is plausible for pyridazine in order to avoid adjacent lone-pair *vs.* lone pair repulsion in the neutral form.

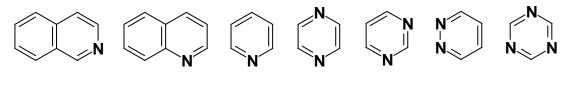
2.2. Aromaticity:

they all are π -deficient systems as indicated by the Atomic π -charges:

Total π - deficiency

+0.050	+0.077	-0.147	+0.126
-0.004 -0.004	-0.124 N +0.047	+0.074 N +0.074	-0.009 N -0.199
-0.004 +0.077 N -0.004 +0.077	-0.124 N +0.047	+0.074 +0.074 +0.074 N +0.074 +0.074	+0.126 +0.155
-0.195	+0.077	-0.147	-0.199
+0.204	+0.248	+0.296	+0.407

- i) The order is different if relative local π -deficiency (the largest positive charge on any carbon atom in a molecule) is considered.
- ii) The π -acceptor action of heteroatoms in azines is most effective when they are *meta*-position each other (pyrimidine).
- iii) The *ortho-para* disposition subjects each carbon atom to two contradicroty forces: a) the strong electron acceptor influence of an *ortho-para*-nitrogen; b) the weak electron donor influence of a *meta*-nitrogen.

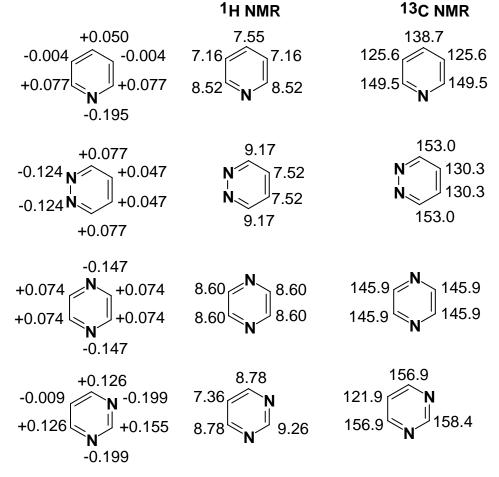

Important notes:

1. The resonance energy (ER) decreases as the number of pyridine like nitrogen increases, according to all methods used to evaluate them (calculation, estimation).

Benzene > Pyridine > Pyrimidine > Pyrazine > Pyridazine

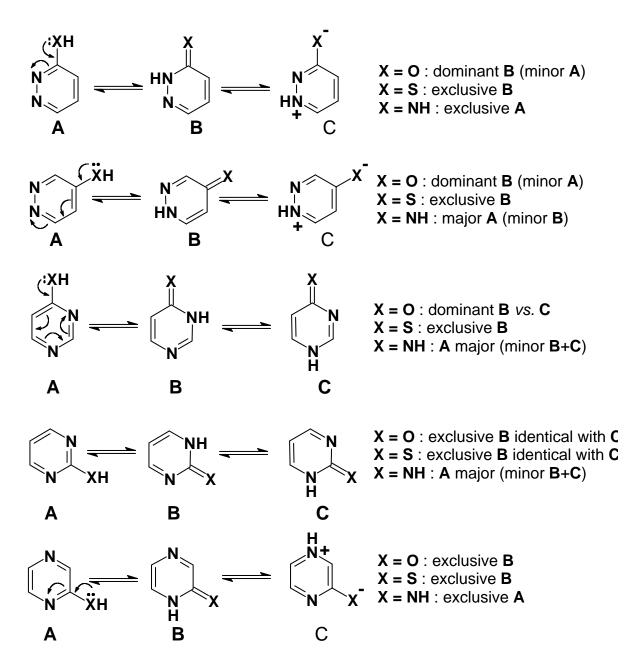
ER (kj/mol) 151 142 138 134 109

2. As the number of pyridine like nitrogen atoms increases, the heterocycle becomes more π -acceptor and less π -donor as revealed by the HMO Energies of Frontier (both decreasing β -values)

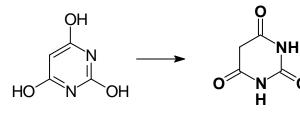


ELUMO (β<0)	- 0.576	- 0.527	- 0.841	- 0.686	- 0.871	- 0.727	- 0.78 ⁻
Ε ΗΟΜΟ (β<0)	+ 0.646	+ 0.703	+ 1.000	+1.000	+ 1.077	+ 1.101	+ 1.28

- electrophilic substitution become successively more difficult as E_{HOMO} decreases both at nitrogen (weakened basicity) and on ring carbon atoms: no reaction at all without activating substituents.
- ii) nucleophilic substitution becomes successively easier as ELUMO decreases
- iii) successive introduction of nitrogen atoms causes a gradual reduction in aromatic stabilisation in both nucleophilic and electrophilic substitution


2.3. NMR data:

- they are in **agreement** with the **Atomic** π -charges:


2.4. Prototropic tautomerism:

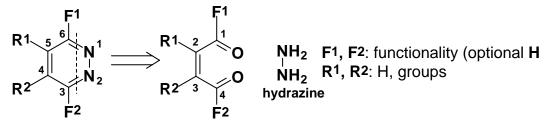
relevance is found in hydroxy-, mercapto- and amino-derivatives (in aq. solution, at r.t.):

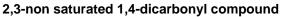
Notes:

- i) for amino derivatives, aromatic tautomeric forms are favored
- ii) tautomerism involving proton transfer to a ring **carbon** atom is **not known** if **but one XH** group is present
- iii) tautomerism involving proton transfer to a ring **carbon** atom is important if **more than two XH** group are present

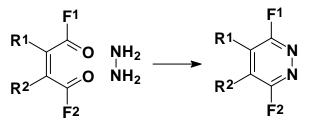
2,4,6-trihydroxypyrimidine

pyrimidyn "trione Barbituric acid

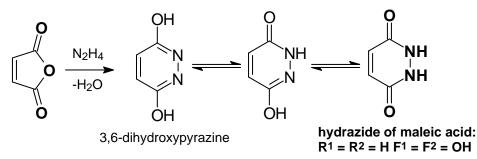

O

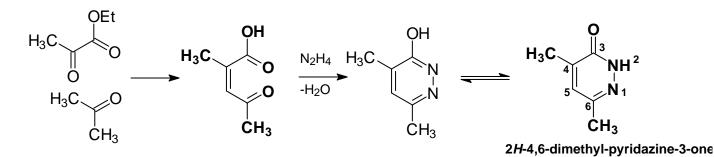

3. Synthesis:

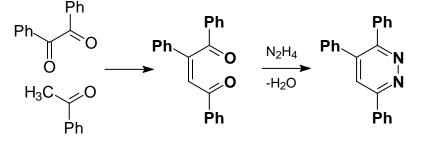
3.1. Two aza-atoms in positions 1,2

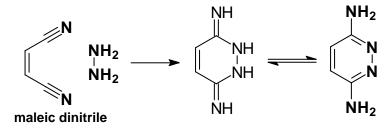

3.1.1. Monocyclic rings: pyridazines

- retrosynthesis: simple hydrolytic disconnection N-1-C-6 and N-2-C-3


- C-1, -4 functionality as *H*, *OH* in the starting compound is crucial for the functionality of the subsequent pyridazine system:


i) F^1 , F^2 functionality as *H*:

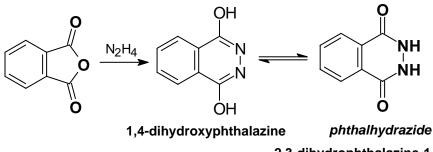

ii) F^1 , F^2 functionality as *OH*:


Mircea Darabantu MASTER IX D-5iii) F^1 , F^2 functionality as *OH and group*:

iv) F^1 , F^2 functionality as *groups*:

v) F¹, F² functionality as *amino groups*:

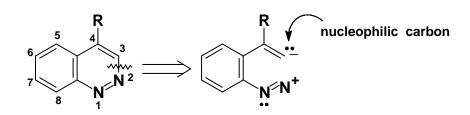
Notes:

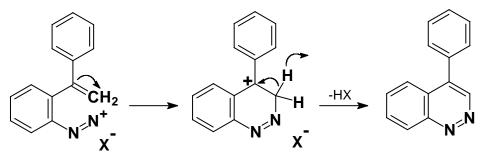

the appropriate *cis* (*Z*) disposal of the 1,4-dicarbonyl-2,3-non saturated precursor is ensured (and originates) by the stereochemistry of the (masked) maleic anhydride
 other appropriate precursors of are not *E-Z* stereoisomers

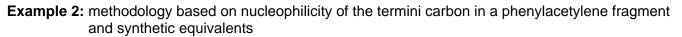
3.1.2. Fused rings: phthalazines

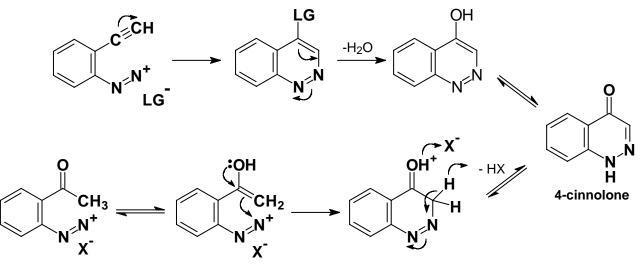
- the appropriate disposal of the carbonyl groups is ensured by their ortho linkage at the benzene ring:

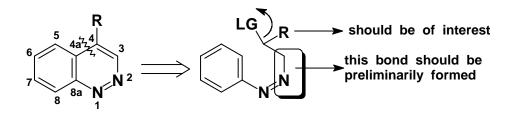
(masked) maleic anhydride \rightarrow pyridazines

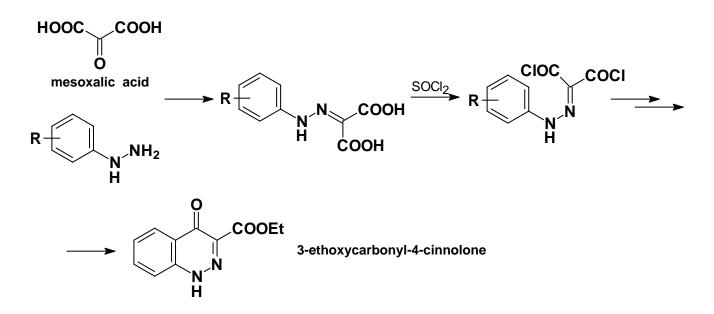

(masked) phthalic anhydride \rightarrow phthalazines

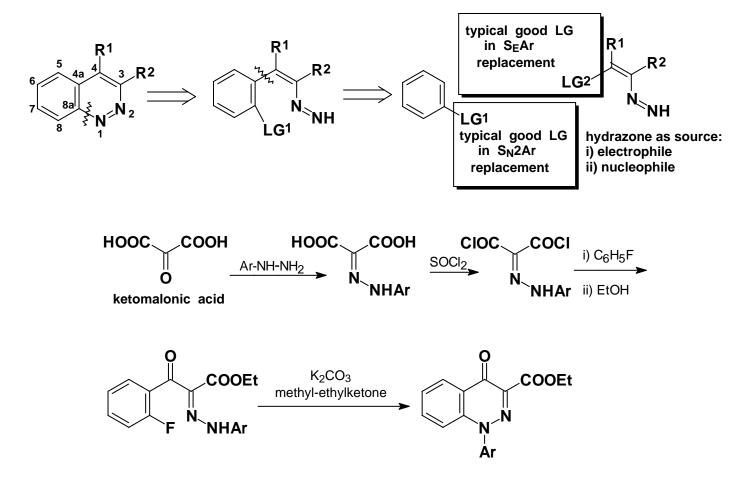

2,3-dihydrophthalazine-1,4-dione


3.1.3. Fused rings: cinnolines

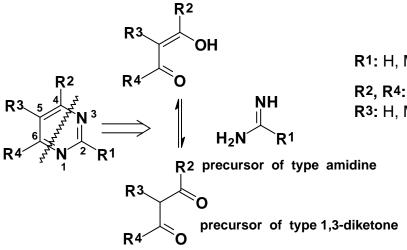

A) From o-substituted diazonium salts: retrosynthetic disconnection as N-2-C-3


Example 1: methodology based on diarylmethane motif to stabilize carbocations of type benzyl



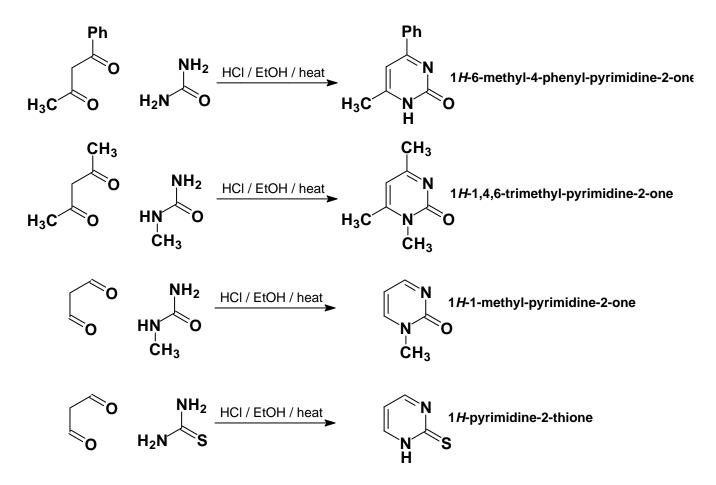

B) Friedel-Crafts methodology: retrosynthetic disconnection as C-4-C-4a

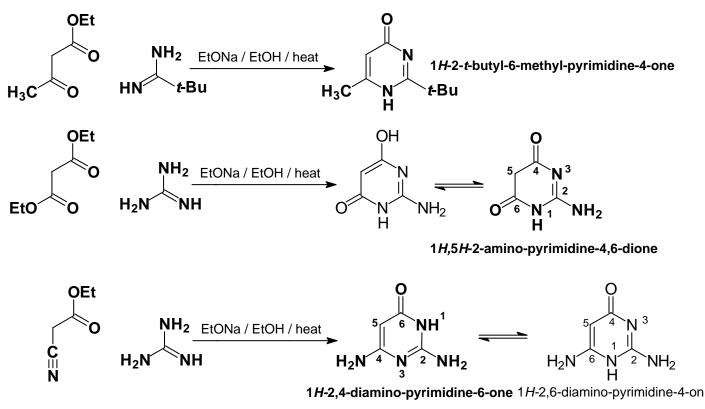
Mircea Darabantu MASTER IX D-7


C) Intramolecular S_N2Ar nucleophilic substitution: retrosynthetic disconnection as C-8a-N-1

3.2. Two aza-atoms in positions 1,3

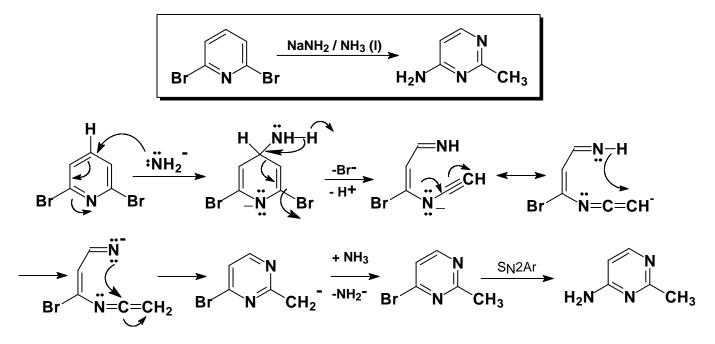
3.2.1. Monocyclic rings: pyrimidines


- general retrosynthesis: double hydrolytic disconnection as N-3-C-4 and N-1-C-6 is the most useful.


R1: H, Me, Ph, OMe, **OH**, SMe, **SH**, **NH**2 R2, R4:H, Me, Ph, **OEt** R3: H, Me, Ph, Br, NO, NO₂

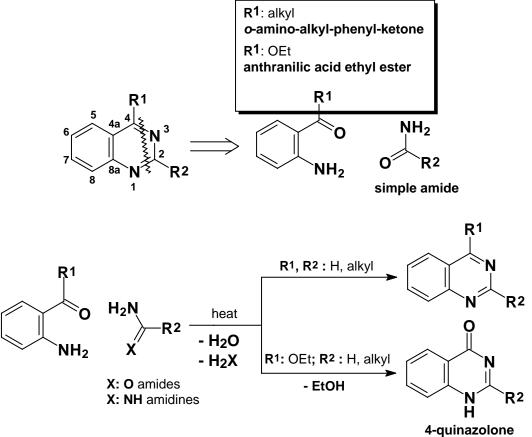
- in bold: groups which afford tautomeric (thi)one- or imine forms
 - general conditions: **basic (NaOH, EtONa)** \rightarrow to activate amidine precursor

acidic conditions are also used \rightarrow to activate 1,3-diketone precursor.


Obs.: acid catalysis is used to activate >C=O of type carbonyl as >C=OH⁺ \leftrightarrow >C⁺-OH

Obs.: in basic conditions **NH**₂ is activated against carbonyl groups of type ester and nitrile. Equilibrium might occur. EtOH should be continuously removed from the reaction mixture.

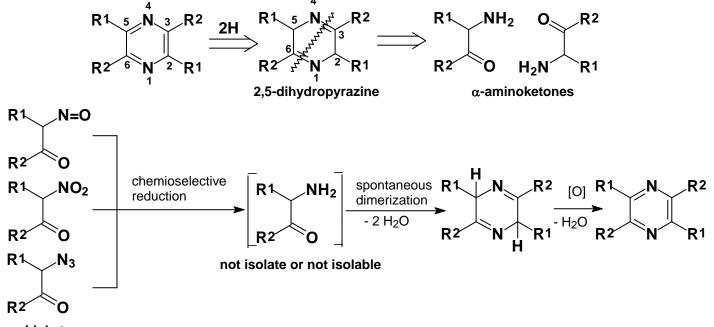
Synthesis via the ANRORC mechanism


Definition: the **ANRORC** (Addition of Nucleophile, Ring Opening, Ring Closure) reaction involves the initial addition of a nucleophile to a ring carbon **not carrying a halogen atom**, followed by electrocyclic ring opening when the halogen atom is removed.

- the method is general and of synthetic interest
- halogen should be a good LG.
- note conditions for the nucleophilic displacement of the second bromine atom

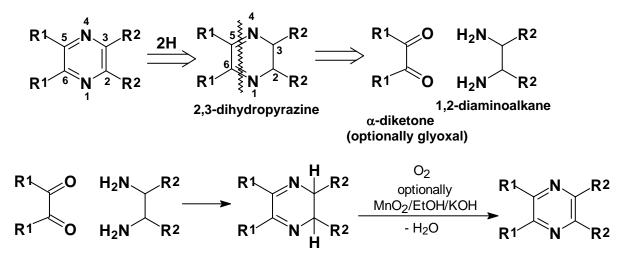
3.2.2. Fused rings: quinazolines

 retrosynthetic disconnection: hydrolytic (N1-C-2 and N-3-C-4) because of the availability of the odisubstituted benzene precursor

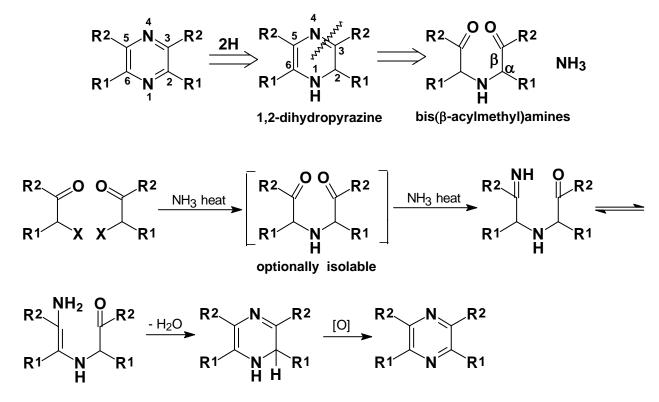


Obs.: note the similitude with pyrimidines / pyrimidinones synthesis

3.3. Two aza-atoms in positions 1,4

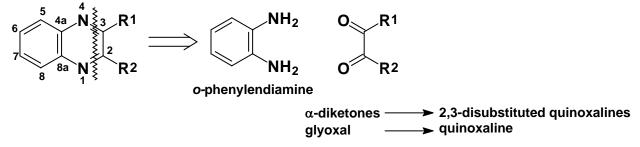

3.3.1. Monocyclic rings: pyrazines

A) retrosynthetic disconnection: hydrolytic as N-1-C-2 and N-4-C-5 in the reduced form:


α-azidoketones

B) retrosynthetic disconnection: hydrolytic as N-1-C-6 and N-4-C-5 in the reduced form:

Note: if $R^1 = R^2 = H$, pyrazine itself is prepared


C) retrosynthetic disconnection: hydrolytic as N-4-C-3 (or N-4-C-5) in the reduced form:

Notes: the methodology is also known for acetals of the starting α -cloro carbonylic compounds

3.3.2. Fused rings: quinoxalines

retrosynthetic disconnection: hydrolytic as double hydrazone (N-1-C-2 and N-4-C-3)

4. Reactivity:

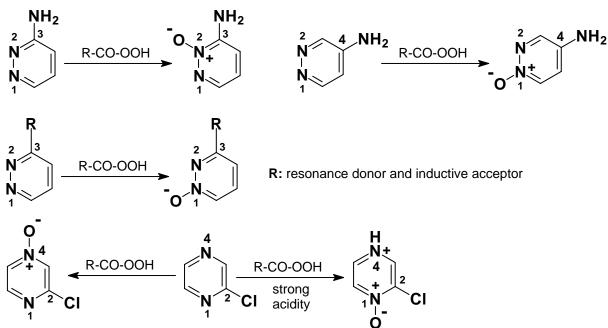
4.1. Electrophilic substitution:

i) almost non reactive unless resonance donors substituents are present in the molecule

ii) almost all substituents linked *a priori* in the precursors are **resonance donors**

4.1.1. At ring nitrogen

- less important, according to lower basicity, in comparison with pyridines; significance is given to substituted pyridazines (the more basic).

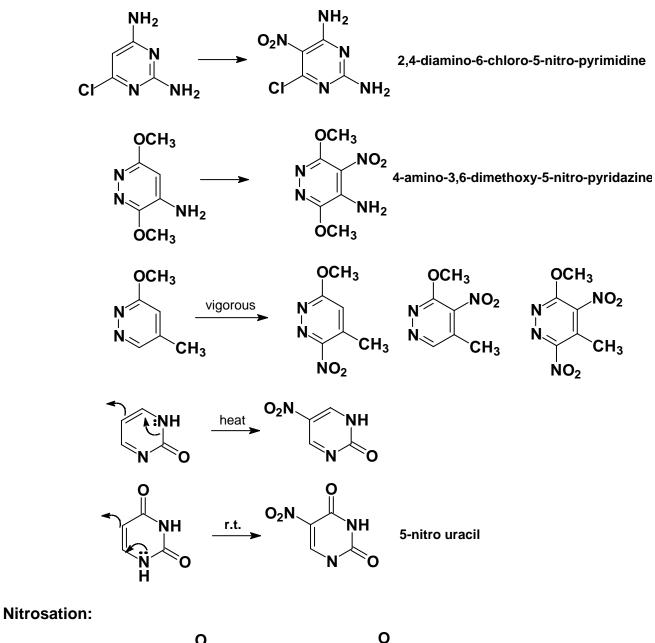

- rules:

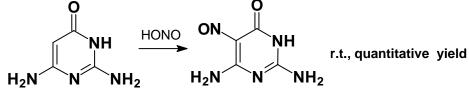
1. strongly withdrawing substituents (NO₂, COR, CI) are very effective in α -position vs. nitrogen ring atom since the effect is largely **inductive**

2. strongly electron donating substituents (NH₂, OR) operate by **mesomeric effects** and is strongest from the γ -position

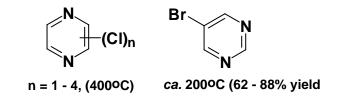
3. from the α -position, inductive effects possessed by the same groups can partially or wholly cancel the increase of reactivity

Example: N-oxidation


Note: similar reactivity is found for N-alkylation, especially with MeI to afford quaternary salts


4.1.2. At carbon ring

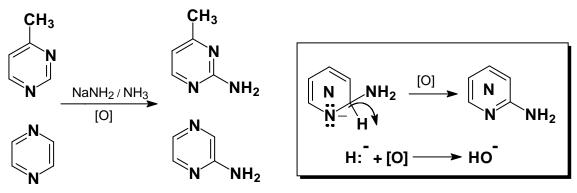
General: reactivity can be predicted from a knowledge of benzene chemistry.


- 1. The **poor reactivity** of diazines is **exacerbated** by the protonation at ring nitrogen in strong acidic media (however, this protonation, including other electrophilic substitution, is often **reversible**).
- 2. Diazines without strongly activating substituents (NH₂, OR), do not react.
- **3.** Diazines with <u>a single</u> strongly activating substituent and diazinones undergo nitration and sulfonation with difficulty (*ca. m*-dinitrobenzene).
- **4.** Diazines with <u>two</u> strongly activating substituents readily undergo nitration, sulfonation and halogenation (*ca.* benzene).
- 5. Diazines with <u>three</u> strongly activating substituents are very reactive towards electrophilic substitution.
- 6. Alkyl groups and halogen atoms behave normally, as weakly activating and deactivating substituents respectively.

Nitration:

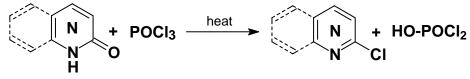
Halogenation:

Note: for synthetic interest, nucleophilic chlorination is preferred


4.2. Nucleophilic substitution:

General:

- crucial to enlarge functionality of diazines.
- of particular importance: H (Chichibabin methodology) and halogens
- much more facilitated than in pyridine series because of the additional ring nitrogen (*e.g.* the LUMO level, as acceptor, decreases).

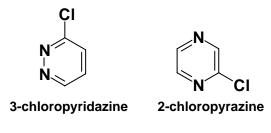

4.2.1. Hydride ion as leaving group

- reaction is made in **liquid ammonia** with **sodamide** as nucleophile because of the **increased** π -deficiency of diazines; accordingly, the σ -complex, as intermediate, has less tendency for re-aromatization; combined with the poor ability of hydride ion to be a good **LG**, an oxidant is needed to push the reaction (KNO₃, KMnO₄), even **ammonia itself**.

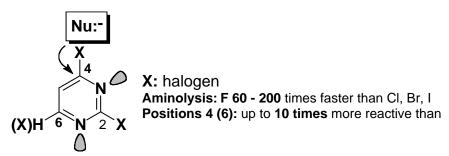
4.2.2. Halogen as leaving group

- the *most useful*: **chlorine** since it is easier to introduce in a **classic variant**:

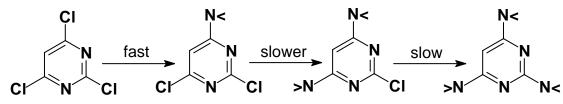
(benzo)diazinone


- the general decreasing order of reactivity, according to halogen (exceptions make the rule !!):

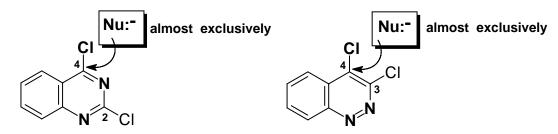
F > I > Br > CI in agreement with a SN2Ar (SAE) mechanism


- nucleophilic reagents, as **general** decreasing of reactivity:

Nucleophile	Conditions	Product
HO hydroxy	NaOH / H ₂ O, 150 ⁰ C	Diazin ones
RO alcoxy	RONa / ROH / 65 ⁰ C	Alcoxydiazines
PhO ⁻ phenoxy	PHONa / EtOH	Phenoxydiazines
HS ⁻ mercapto	KSH / propylene glycol	Diazinthi ones
MeS ⁻ methylmercapto	NaSMe / MeOH, 65 ⁰ C	Methylmercaptodiazines
NH ₃ (amino), Me ₂ NH (dimethylamino), N ₂ H ₄ (hydrazine)	NH ₃ /H ₂ O etc.100 – 200 ⁰ C	Amino-, methylamino- hydrazinodiazines
HSO ₃	NaHSO ₃ / H ₂ O	Diazine sulfonic acids
l ₂	H	lododiazines
F	KF, HF (heat)	Fluorodiazines


- typical examples for the nucleophiles listed in Table:

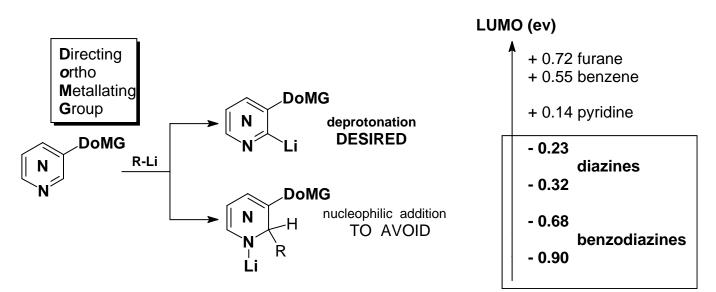
Selective nucleophilic substitution – general rules and conditions:



- as in **benzene chemistry**: **electron donating** substituents (Me, Ph, OMe, NH₂, NMe₂, etc.) **decrease** the rate of nucleophilic substitution, whereas **electron-withdrawing** substituents (CI, CF₃, NO₂, etc.) have **opposite** effect

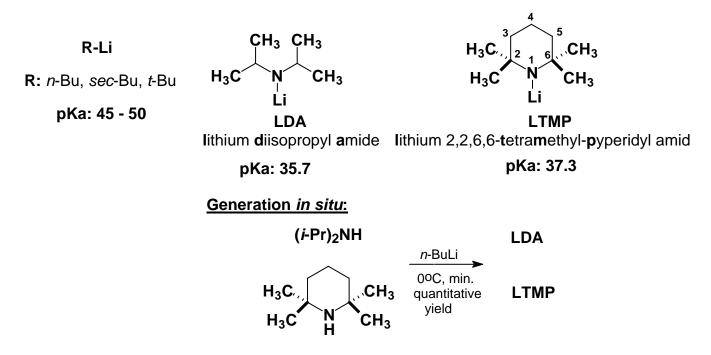
- comparison of (poly)chloro-derivatives of diazine type as masked imidoyl chlorides is **more pertinent** than in **pyridine** series.

in benzodiazine series:


- the better regioselectivity in the above dichloro-benzodiazines series might be explained by **the more** aromatic character of the intermediate σ -complex following the attack at C-4 than at C-2 (-3).

4.3. Advanced functionalization via metallation:

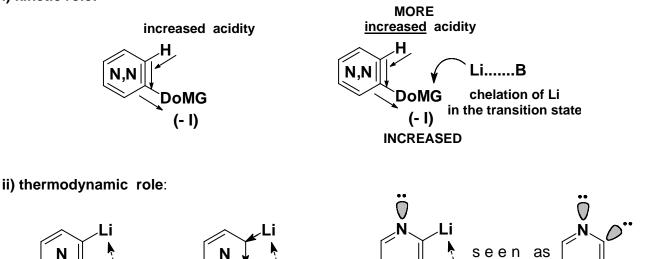
Overview:


- diazines, possessing **two nitrogen atoms**, are very sensitive to nucleophilic additions at the carbon ring.

- the LUMO (diazines) << LUMO (pyridines)
- hydrogen atoms linked to the ring are more acidic than in the pyridine series.

Remarks:

- the metallating reagent should be less nucleophilic (e.g. by intrinsic steric hindrance)
- the metallating reagent can be less basic (since diazines are more acidic)
- alkyllithium reagenats (e.g. *n*-BuLi) should be avoided in diazine series.



DoMG Directing *ortho***-Metallating Group**, structural unit with crucial role:

- kinetic and thermodynamic
- useful structure to develop multi step synthesis
- it should be not Methyl group, in order to avoid the deprotonation at this site.

DoMG Directing ortho-Metallating Group, structural unit with crucial role:

i) kinetic role:

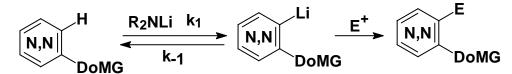
stabilisation as complexed carbanion

DoMG

Sulfur: SCH₃, SOR, SO₂R, SO₃R, SO₂NHR

stabilisation by the (-I) of DoMG

DoMG

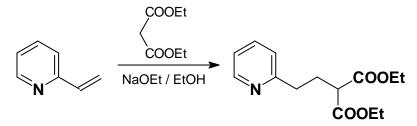

stabilisation against vicinal repulsion

DoMG

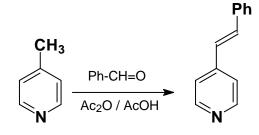
DoMG

Note: the DoMG must be simple enough, easily to introduce in the diazine motif or, even better, present before the ring closure.

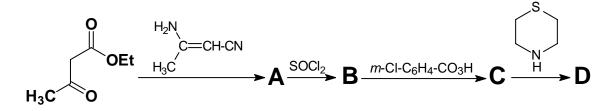
General mechanism:

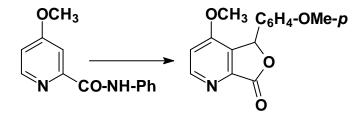

a) k₁ >>> k₋₁: trivial case; deutherated species detectable
b) k₁ <<< k₋₁: metallation in equilibirum; "trapping *in situ*" methodology; no deutherated species detectable no reaction between R₂NLi and E+

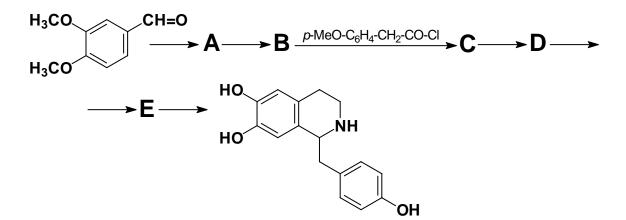
Directing ortho-Metallating Groups	Functionalisations as:		
Halogens: F, Cl, Br, I	Halogen: F, Cl, Br, I		
Oxygenated Groups: OCH_3 , OCH_2OCH_3 $OCONEt_2$ etc.	Carbonated: $C(OH)R_1R_2$, $COOH$, COR , CHO , CH_3 , $CONR_2$ etc.		
Carbonyl: CONH- <i>t</i> -Bu, CONEt ₂ , CF ₃ etc.	Nitrogen: NH ₂ (<i>via</i> N ₃)		
Nitrogen: NH-CO- <i>t</i> -Bu, NH-COO- <i>t</i> -Bu	Others: SiR_3 , SnR_3 etc.		


Note: in the absence of DoMG, yields and regioselectivities much decrease: no synthetic importance

P-6


1. Propuneti un mecanism de reactie pentru transformarea de mai jos :


2. Propuneti un mecanism de reactie pentru transformarea de mai jos :


3. Identificati compusii A, B, C, D din schema de mai jos :

4. Realizati transformarea :

5. Identificati compusii A – E din schema de obtinere a alcaloidului de mai jos :

