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1. DETERM1. DETERMIINISTIC vs. STOCHASTIC NISTIC vs. STOCHASTIC 
METHODS of OPTIMIZATIONMETHODS of OPTIMIZATION

or WHY STOCHASTIC METHODS ???

Because “classical “ deterministic approaches (i.e.
mathematical programming) have serious drawbacks 
(particularly when applied by non-experts)

ARE NOT ABLE TO LOCATE the GLOBAL OPTIMUM (in NON-
LINEAR PROBLEMS)

REQUIRE SMOOTH FUNCTIONS WITHOUT DISCONTINUITIES and 
(often) ALSO DIFFERENTIABLE (even twice)

DO NOT PERFORM WELL with MIXED-INTEGER VARIABLES 
(discrete & continuous – MINLP PROBLEMS)



Additional troubles with deterministic Additional troubles with deterministic 
approaches:approaches:

““goodgood”” solvers are commercialsolvers are commercial

Expensive

Black-box-like (for non-expert) 

Work in equation mode (in practice external

modules of user are very useful)



1) PROVIDE HIGHER PROBABILITY of LOCATING 

GLOBAL OPTIMUM („GLOBAL” OPIMIZERS)

2) SIMPLE (can be coded by non-experts)

3) DISCONTINUITIES DO NOT CAUSE TROUBLES

4) CAN WORK in EQUATION and MODULAR MODE

STOCHASTIC APPROACHESSTOCHASTIC APPROACHES



BUTBUT

LONG COMPUTATION (CPU) TIME

HEURISTIC CONTROL PARAMETERS VALUES (that 

usually have to be adjusted by error-and-trial procedure)

DIFFICULTIES with EQUALITY CONSTRAINTS

One has to choose from variety of approaches (usually 

not tested sufficiently)



ADAPTIVE RANDOM SEARCH (ARS) - single-point based

SIMULATED ANNEALING (SA) – single-point based

GENETIC ALGORITHMS (GA)- population based



2. ARS METHOD

CONCEPT of ADAPTIVE RANDOM SEARCH:

CONCENTRATE GENERATION „AROUND” 

CURRENTLY BEST SOLUTION BY SEARCH 

REGION CONTRACTION AND / OR THE USE 

OF SPECIAL FUNCTION WITH INCREASED

PROBABILITY DENSITY



LUUS - JAAKOLA (LJ) ALGORITHM 
IT MAKES SEVERAL SEARCHES WITHIN CURRENT 

SEARCH REGION without space decrease or density 

change (EVEN IF THERE IS A „SUCCESS”) WHILE OTHER 

METHODS (GADDY, SALCEDO,...) INCREASE 

PROBABILITY DENSITY AND / OR CONTRACT REGION 

AFTER EACH SUCCESS

LJ ALGORITHM features resemblance to population-
based methods ⇒ should gives higher chance of global 
optimum (and is very SIMPLE)



x1

x2

the best point
in 1st loop

search space
in 1st loop



1) Adaptation of LJ for MINLP problems ( consistent 

scheme of generating discrete variables)

2) Major changes in the scheme of decreasing the region 

search sizes:

a) the decrease is variable dependent (i.e. Region 

search size decrease varies dependent on a 

variables),

b) a rate of region search size decrease is similar to 

Gauss density distribution → to avoid local optima 

traps in initial phase.

OUR MAJOR MODIFICATIONS and EXTENSIONOUR MAJOR MODIFICATIONS and EXTENSION



Illustration of space Illustration of space 
decrease scheme in decrease scheme in 

original approachoriginal approach
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FUNDAMENTAL CONCEPT:
SOLUTION IS ACCEPTED WITH PROBABILITY P

3. SIMULATED ANNEALING

etemperatur -   T              
ff=f   :where

0f if  )Tf/exp(-
0<f if                    1

P

i1i+ −Δ
⎩
⎨
⎧

≥ΔΔ
Δ

=

THIS ALLOWS FOR JUMPING OFF OUT 
OF LOCAL OPTIMA !



1.Fix T (initial value) and generate X0

2.Generate Xs (neighboring point), calculate   
f(Xs) and accept Xs according to P.

3.REPEAT step 2 for decreasing value of T until 
stopping criteria are met

GENERAL ALGORITHM

Remark: X0 has to be feasible



NELDER - MEAD OPTIMIZATION ALGORITHM (SIMPLEX)
EMBEDDED INTO SA SCHEME

/proposition of Press and Teukolsky ’91/

FUNDAMENTAL CONCEPT:
Each vertex of a simplex is „disturbed” by:

P1 = -T × ln(z)
z - random number from uniform distribution [0,1]
HOW IT WORKS ?

1) P1 is added to each vertex generated by N-M scheme
2) P1 is subtracted from „reflected” vertex of new simplex

MODIFICATION of SA for CONTINUOUS (NLP) 
PROBLEMS

RANDOM MOVEMENTS of SIMPLEX



Random movements uphill (for 
minimization)

AIM:

to give additional randomization for small

T values where SA/S performs similarly to 

Nelder-Mead (i.e. works as deterministic 

approach)

OUR MODIFICATION



Specific features of our approach (GENSpecific features of our approach (GEN--COM)COM)
real coded numbers (not binary coded),

The use of sub-population consisting with genetically 
transformed solutions. The solutions from the subpopulation 
and its parent population compete with each others to create 
the next parent population ⇒ this is to eliminate premature 
problem, i.e. to escape from local optimum

9 mutation and crossover operators that can be used to both 
continuous and discrete variables

3 various mechanisms for dealing with inequality constraints

4. 4. GENETIC ALGORITHMS (GA)GENETIC ALGORITHMS (GA)
Remark:Remark: this is population based approach that is often 
considered more robust (but also more time consuming)



Characteristic features:

coded in C++ with the use of DLL libraries

can operate under Windows and Linux,

can operate in equation and equation-modular mode.

55. . COMPUTERCOMPUTER--SOLVER OPTSOLVER OPTII--STOSTO

Most important: Most important: 

Has his own generic modeling systemHas his own generic modeling system (similar(similar
to that in GAMS). to that in GAMS). 



Main goal:

easy to use framework for solving equalities

Remark:

equalities are major problems for stochastic approaches, 
penalty terms, relaxation – are not good solutions

Most efficient is:

solve the equations directly

but

they should be linear ones



User  → select decision variables such that equalities 
become linear in regards to dependent variables

IMPORTANT:

balances involves bilinear terms:

0...YXYX 2211 =+⋅+⋅

SOLUTION SCHEME:

Choose X1, X2,... decisions variables and.... balances are 
linear in regards to Y1, Y2,....



SOLUTIONS FRAMEWORK:

decision variables (data)

solve equation set no. 1 

check set of inequalities



SOLUTIONS FRAMEWORK:

decision variables (data)

solve equation set no. 1 

check set of inequalities



SOLUTIONS FRAMEWORK:

decision variables (data)

solve equation set no. 1 

check set of inequalities

solve equation set no. 2



6.1. Mathematical NLP and MINLP  problems 

designed for tests of optimization problems

about 20 NLP unconstrained functions (highly 

multimodal)

more than 10 NLP constrained problems with 

inequality and/or equality constraints

some MINLP problems of small scale in regards 

to no. of discrete variables



1)To evaluate robustness and efficiency of 
various versions of solution algorithms

2)To find good values of control parameters

3)To get knowledge on properties of the 
algorithms: for what types of problems, 
limitations,...

Aims of the tests:



• Reaction equilibrium composition
• Alkylation process optimization
• Optimization of reactor train 
• Reactor selection from the superstructure
• Multi-product batch train optimization 
• Optimal sequence for separating two-

component mixture 
• Cross-current extraction train with recycles

6.2. Small processes engineering problems



• Optimization of HENs with fixed structure

• Optimization of chromatography

• Retrofitting optimal HENs

• Designing optimal water usage networks

6.3. Applications for process system engineering 

problems:



Our experiments (and literature information) 
show, that stochastic approaches are easy to 
use, robust methods.

RememberRemember, however, on
„no free lunch theorem”„no free lunch theorem”

7. 7. CONCLUSIONSCONCLUSIONS

there is no universal optimization method
One has toOne has to:

Choose proper approach and adjust parameters
Formulate properly the problem for the chosen method
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