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Abstract. A hyper-adamantane, Hyp[ada.10](..).n is an ada.10 structure (the host structure), in which 

every vertex is replaced by a guest unit. Five triple periodic networks were designed by translating such hyper-
adamantanes, along the orthogonal coordinate axes. Their repeating units were tested with respect to the 
rhombellanic character. Topological details on the concerned structures are given. 
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1. Introduction 

In the recent years, crystal engineering and self-assembly processes have promoted new classes 
of finite and/or periodic nanostructures, with promising applications in material science and 
biosciences. 

Based on Platonic and Archimedean solids, nano-sized spheroid architectures, with a variety of 
appropriate ligands have been synthesized [1–7]. The metals to join the ligands, include Pd2+ [3–6], 
Zn2+ [7], Cu2+ [8] etc.  

The spherical structures, possessing large hollows, could be functionalized, both endo– and/or 
exohedrally. MOFs [9-12] are appreciated by their light structure, the voids inside being occupied by 
appropriate guests, or remaining empty. In the herein text, such light structures are termed “spongy” 
ones. 

Adamantane, ada.10 molecule, was discovered by Landa (a Czech chemist) in 1933 in petrol 
[13]. The adamantane ada.10 is named tricyclo[3.3.1.13.7]decane, by the IUPAC nomenclature [14]. 
Hyper-clusters are polyhedral structures of which nodes are polyhedral structures (the same or different 
ones). Then a hyper-adamantane, e.g., Hyp[ada.10](ada.10).100 (Fig. 1, left) is an ada.10 structure (the 
host structure - in square brackets), in which every vertex is replaced by a guest unit (in this case, the 
same ada.10 – in round brackets). 

Rhombellanes are structures with all rhomb/square rings, some of them forming local 
propellane substructures; they have been proposed by Diudea in 2017 [15]. Propellane was first 
synthesized in 1982 [16]; by IUPAC nomenclature, it is named tricyclo[1.1.1.01,3]pentane, a 
hydrocarbon with formula C5H6. Its reduced form, C5H8, or the bicyclo[1.1.1]pentane, has only 
rhomb/square rings; it can be represented as K2.3 - the complete bipartite graph. The two bridge carbon 
atoms can be functionalized, e.g., by bromine or COOH, or even by repeating the K2.3 motif, as in the 
staffane polymer [17,18]. 

A structure is a rhombellane if all the five conditions in Table 1 (left column) are obeyed [19-
25]; these criteria have recently been reconsidered [24], in the view of accepting the presence of 
enlarged even-sized polygonal faces (with respect to the Omega criterion) and other than rbl.5 smallest 
tiles, thus defining related quasi-rhombellanes, as shown in Table 1 (right column). 
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Table 1. Criteria for rhombellanes and quasi-rhombelanes. 

 Rhombellanes Quasi-rhombellanes 
1 All strong rings are r4 Rings are r4 and/or even-sized rings/circuits. 
2 Vertex classes are non-connected inside a 

class 
Vertex classes are non-connected inside a class 

3 Omega polynomial has (at rmax4) a single 
term: 1x^e 

Omega polynomial has (at rmax) a single term: 
1x^e 

4 Line graph has a Hamiltonian circuit Line graph has a Hamiltonian circuit 
5 There exist smallest units/tiles rbl.5 = K2.3  There are more smallest tiles: rbl.5 = K2.3 and/or 

ada.10, … 
 

Omega polynomial [26,27] Ω(x) was defined by Diudea (2006) on the ground of opposite edge 
strips, ops, in the graph. Denoting by m, the number of ops of length s, one can write: Ω(x) = Ʃs msXs. 
Its first derivative (in x = 1) counts the number of edges “e” in a graph: Ω`(1) = Ʃs sms = |E(G) = e|. 
There are graphs with a single opposite edge stripe, which is a Hamiltonian circuit. For such graphs, 
Omega polynomial has a single term:  Ω(x) = 1X s; s = e. This polynomial was implemented in the Nano 
Studio software package, developed at Topo Group Cluj, Romania [28]. It is computed within two ring 
size limits: (rmin.rmax) which define the maximal explored rings.  

Finding vertex (subgraph) classes in a graph is related to Topological Symmetry. The vertex classes 
in the concerned structures are calculated as centrality classes, by using the Centrality index, C, 
developed at Topo Group Cluj [29]. It is calculated on layer/shell matrices [30,31], as: 
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This index allows to find the graph center and provides an ordering of vertices according to their 
centrality in the graph [32].  
 

1. Results 
1.1. Hyper-adamantane clusters 
The hyper-adamantane, Hyp[ada.10](ada.10).100 (Fig. 1, left) was the first modeled [33] in a series 

of six hyper-adamantanes, Hyp[ada.10]()n, listed in Table 2, as follows: (i) (ada.10).100 (entry 1.2 – 
Fig. 1, left); (ii) (ada.1.10).88 (entry 1.4); (iii)  (rh12.1.14).128 (entry 2.2); (iv) (rh24.1.26).248 (entry 
3.2), (v) (rh6.1.8).68 (entry 4.2 – Fig. 1, right) and (vi) (CC.60).528 (entry 5.2). Table 2 lists also their 
topological substructure components and the corresponding values of Omega polynomial (see the next 
section). 

 

  
Hyp[ada.10](ada.10).100 Hyp[ada.10](rh6.1.8).68 

Figure 1. Hyper-adamantane units 
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Table 2.  Topology of hyper adamantane Hyp[ada.10](..).n units (italicized numbers count the 
maximum sized strong rings; bold-face numbers correspond to the values of rmax, giving the single term 
1X^e in Omega polynomial). 
 Cluster v e cls r4 r6 r8 r12 r14 r16 r18 r20 Omega polynomial 
 
1 ada.10 10 12 2 0 4 3 0 0 0 0 0 

(6.6) = 4X^3 
(6.8) = 1X^12 (rmax-int) 

 
 
1.1 

(ada.10).60 60 78 5 0 24 18 0 0 0 1 12 

(6.6) = 6X^1+24X^3 
(6.8) = 6X^1+6X^12 
(6.20) = 1X^78 
(rmax+2) 

 
 
1.2 

(ada.10).100 100 132 9 0 40 30 0 0 0 4 48 

(6.6) = 12X^1 + 
40X^3 
(6.8) = 12X^1 + 
10X^12 
(6.20) = 1X^132 
(rmax+2) 

 
 
1.3 

(ada.1.10).54 54 72 5 0 24 18 1 12 72 280 780 

(6.6) = 24X^3 
(6.8) = 6X^12 
(6.14) = 1X^72 
(rmax+2) 

 
 
1.4 (ada.1.10).88 88 120 7 0 40 30 4 48 0   

(6.6) = 40X^3 
(6.8) = 10X^12 
(6.12) = 1X^120(rmax) 

 
2 rh12.14 14 24 2 12 0 18 0 0 0   

(4.4) = 4X^6 
(4.8) = 1X^24 (rmax-int) 

 
 
2.1 

(rh12.1.14).78 78 144 6 72 0 108 1 12 0   

(4.4) = 24X^6 
(4.8) = 6X^24 
(4.14) = 1X^144 
(rmax+2) 

 
 
2.2 (rh12.1.14).128 128 240 9 120 0 180 4 50 0   

(4.4) = 40X^6 
(4.8) = 10X^24 
(4.12) =1X^240 (rmax) 

 
3 rh24.26 26 48 3 24 0 15 200 0 0   

(4.4) = 6X^8 
(4.8) = 1X^48 (rmax-int) 

 
 
3.1 

 
 
(rh24.1.26).150 

 
 

150 

 
 

288 

 
 

11 

 
 

144 

 
 

0 

 
 

90      

(4.4) = 36X^8 
(4.8) = 6X^48 
(4.14) = 6X^48 

 
 
3.2 (rh24.1.26).248  248  

 
480  

 
19  

 
240  

 
0  

 
150       

(4.4) = 60X^8 
(4.8) = 10X^48 
(4.12) = 10X^48 

 
4 rh6.8 8 12 1 6 0 0 0       

 
(4.4) = 3X^4 

 
 
4.1 (rh6.1.8).42 42 72 4  36  0  0  64      

(4.4) = 18X^4 
(4.8) = 18X^4 
(4.14) = 4X^4+1X^56 

 
 (rh6.1.8).68  68  120  7  60  0  0  256      

(4.4) = 30X^4 
(4.8) = 30X^4 
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4.2 (4.12) = 6X^4 + 
1X^96 

 
 
5 

CC.60  60  72  3  0  8  0  0  0  6  24   

(6.6) = 24X^1 + 
24X^2 
(6.16) = 6X^4 + 6X^8 
(6.18) = 1X^72 
(rmax+2) 

 
 
5.1 

(CC.60).324  324  396  27  0  42  0  0  0  36  144   

(6.6) = 
144X^1+126X^2 
(6.16) = 
36X^4+18X^8+3X^36 
(6.18) = 1X^396 
(rmax+2) 

 
 
5.2 

 
(CC.60).528 
  528  648  31  0  68  0  0  0  60  240   

(6.6) = 240X^1 + 
20X^2 
(6.16) = 60X^4 + 
30X^8 + 3X^56 
(6.18) = 1X^648 
(rmax+2) 

 
 

1.2. Hyper-adamantane networks 
Excepting (ada.1.10).88, the other five hyper-adamantanes provided triple periodic networks in 

which the repeating units show the same vertex classes both as “selection” within the bulk network and 
as free/isolated adamantoid. Fig. 2 illustrates the nets corresponding to the clusters in Fig. 1 (as 2×2×2 
domains) while Fig. 3 shows the network of Hyp[ada.10](CC.60).528) unit, (as 3×3×3 domains – see 
[25]),  in two different projections. Vertex classes and the sequences of connectivity (LC) and rings 
around atoms (LR) for these networks are listed in Table 3. 
 

  
Hyp[ada.10](ada.10)-net (2×2×2) Hyp[ada.10](rh6.1.8)-net (2×2×2) 

Figure 2. Hyper-adamantane networks 
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Figure 3. Etheric hyper-adamantane network (3x3x3); (unit: Hyp[ada.10](CC.60).528).  
 
 
Table 3. Triple periodic network: unit/tile T; vertex connectivity classes; ring domain; population; 
degree; point symbol; LM sequence: connectivity (LC) and atom surrounding rings (LR).  
Class      Network and vertex 

classes   
                           LM 

1 Hyp[ada.10](ada.10) - net T1: (Hyp[ada.10](ada.10)).100; (v = 100; e = 132; r6 = 40; r18 = 
4). 
ada.10 (v = 10; e = 12; r6 = 4; r8 = 3) 

1.1 (6.6);   {60}; | deg = 2 | 6^2 
(6.18); {60}; | deg = 2 | 
6^2.8^2.18^2 

LC:           {60}; 2.6.8.9.18.24.30.54.70.74. 
LR(4.4);   {60}; 2.6.14.18.26.42.54.84.126.158.204. 
LR(4.12); {60}; 6.24.48.60.102.144.180.324.432.528.780. 

1.2 (6.6);   {40}; | deg = 4 | 6^3 
(6.18); {40}; | deg = 4 | 
6^3.8^3.18^6 

LC:           {40}; 4.6.9.15.18.27.45.54.75.105. 
LR(4.4);   {40}; 3.9.15.24.33.45.72.99.135.198.231. 
LR(4.12); {40}; 12.30.54.90.108.162.270.324.486.738.756. 

2 (Hyp[ada.10](rh12.1.14)) 
- net 

T1: (Hyp[ada.10](rh12.1.14)).128; (v = 128; e = 240; r4 = 120). 
rh12.14 (v = 14; e = 24; r4 = 12) 

2.1 (4.4); 40 | deg = 3 | 4^3 
(56) 
(4.8); 40 | deg = 3 | 
4^3.8^9 

LC:         {40}; 3.6.12.19.39.63.114.148.207.252. 
LR(4.4): {40}; 3.12.27.48.87.156.279.456.624.828.1062. 
LR(4.8): {40}; 12.48.108.192.348.624.1116.1824.2496.3312.4248. 

2.2 (4.4); 60 | deg = 4 | 4^4 
(60) 
(4.8); 60 | deg = 4 | 
4^4.8^12 

LC:         {60}; 4.10.16.31.50.94.132.193.230.322. 
LR(4.4): {60}; 4.18.40.72.124.222.376.564.772.966.1288. 
LR(4.8): {60}; 16.72.160.288.496.888.1504.2256.3088.3864.5152. 

2.3 (4.4); 28 | deg = 6 | 4^6 
(12) 
(4.8); 28 | deg = 6 | 
4^6.8^18 

LC:         {28}; 6.12.24.38.72.108.168.198.276.330. 
LR(4.4): {28}; 6.24.54.96.168.288.468.672.828.1104.1368. 
LR(4.8): {28}; 
24.96.216.384.672.1152.1872.2688.3312.4416.5472. 

3 (Hyp[ada.10](rh24.1.26))-
net 

T1: (Hyp[ada.10](rh24.1.26)).248; (v = 248; e = 480; r4 = 240). 
Rh24.26 (v = 26; e = 48; r4 = 24) 

3.1 (4.4);   40 | deg = 3 | 4^3 
(4.8);   40 | deg = 3 | 4^3 

LC:         {40}; 3.6.15.24.21.19.39.63.60.60. 
LR(4.4): {40}; 3.12.30.60.84.84.96.156.219.240.300. 
LR(4.8): {40}; 3.27.60.135.204.189.186.351.519.540.600. 

3.2 (4.4); 180 | deg = 4 | 4^4  
3.2.1 (4.8);   60 | deg = 4 | 

4^4.8^10 
LC:         {60}; 4.8.14.17.18.24.36.50.60.74. 
LR(4.4): {60}; 4.16.34.56.64.72.102.144.192.240.312. 
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LR(4.8): {60}; 14.36.74.126.134.162.222.324.432.540.672. 
3.2.2 (4.8); 120 | deg = 4 | 

4^4.8^5 
LC:         {120}; 4.9.14.17.20.27.37.48.62.84. 
LR(4.4): {120}; 4.17.36.55.68.81.108.147.192.252.336. 
LR(4.8): {120}; 9.37.81.125.153.171.243.327.432.552.756. 

3.3 (4.4); 28 | deg = 6 | 4^6 
(4.8); 28 | deg = 6 | 4^6 

LC:         {28}; 6.12.12.12.24.38.36.36.72.114. 
LR(4.4): {28}; 6.24.42.48.60.96.132.144.180.288.396. 
LR(4.8): {28}; 6.54.102.108.120.216.312.324.360.648.936. 

4 Hyp[ada.10](rh6.1.8) - 
net 

T1: (Hyp[ada.10](rh6.1.8)).68; (v = 68; e = 120; r4 = 60). 
rh6.8 (v = 8; e = 12; r4 = 6) 

4.1 (4.4);   40 | deg = 3 | 4^3 
(4.12); 40 | deg = 3 | 
4^3.12^192 

LC:           {40}; 3.12.10.33.30.88.60.150.102.250. 
LR(4.4);   {40}; 3.18.36.60.99.180.264.360.450.612.750. 
LR(4.12); {40}; 
195.1170.2340.3900.6435.11700.17160.23400.29250.39780.48750. 

4.2 (4.4);   28 | deg = 6 | 4^6 
(4.12); 28 | deg = 6 | 
4^6.12^384 

LC:           {40}; 6.6.20.18.60.48.120.78.204.126. 
LR(4.4);   {40}; 6.18.36.60.108.180.288.360.468.612.756. 
LR(4.12); {40}; 
390.1170.2340.3900.7020.11700.18720.23400.30420.39780.49140. 

   
5 Hyp[ada.10](CC.60) - net T1: (Hyp[ada.10](CC.60)); (v = 528; e = 648; r6 = 68; r16 = 60). 

CC.60 (v = 60; e = 72; r6 = 8; r16 = 6). 
5.1 (6.16); {120}; deg = 2; 

16^2. 
 

LC: {120}; 2.4.3.5.9.12.18.22.26.22. 
LR: {120}; 2.6.8.11.18.28.36.44.58.57.69. 

5.2 (6.16); {120}; deg = 2; 
6.16. 
 

LC: {120}; 2.4.6.8.9.13.20.20.24.28. 
LR: {120}; 2.7.12.18.20.24.39.52.58.68.82. 

5.3 (6.16); {120}; deg = 3; 
6.16^2. 
 

LC: {120}; 3.3.5.6.9.15.19.24.23.29. 
LR: {120}; 3.6.10.14.20.30.40.51.54.66.77. 

5.4 (6.16) ; {168}; deg = 3; 
6.16^3. 

LC:{168}; 3.5.7.9.12.14.16.20.23.28. 
LR:{168}; 4.10.15.18.22.29.36.50.66.70.71. 

 
2. Discussion 
The cluster Hyp[ada.10](ada.10) is the only one with no “coalesced” atoms in the units. In the other 

hyper-adamantanes, two neighbor units share an atom, i.e., the have a common coalesced atom; this is 
marked in the name of clusters by “1”, between the number of rhombs and number of atoms, as in 
“rh6.1.8”; the simple “rh6.8” represents the shape of the cube, the mark “rh12.14” is the shape of 
rhombic dodecahedron. Observe that here one speaks rather about the “shapes” not the well-known 
geometrical structures; this is because, in this topological view, the angles and bond lengths are 
disregarded [34,35]. 

The hyper-adamantane networks show a single “hyper-tile” (marked T1 in Table 3, the right 
column); this means that the “hyper-net” follows the type of primary net – the diamond dia-net, even 
the description of a tile (for the definition of “tile” see refs. [36,37]) could be here much complicated. 
In this view, we identified the single “hyper-tile” as the repeating hyper-adamantane Hyp[ada.10](..).n 
unit.  

In adition to the vertex connectivity sequence, used in crystallography, and computed by Topo 
Group Cluj from the entries in the layer matrix of connectivity LC [29-31], our group proposed the use 
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of layer matrix of vertex surrounding rings [38] LR, the last one being a more powerfull topological tull 
in discriminating the crystal networks. Note that different LR count results (Table 3, the right column), 
function of the ring domain considered: (rmin.rmin) (corresponding to the ring symbol) or (rmin.r), r-being 
a chosen value, working as a true “zoom” in separating the vertex classes. 

With respect to the rhombelane character, the Omega polynomial criterion was investigated (see 
Table 2); the concerned clusters are rather quasi-rhombellanes, according to the criteria listed in Table 
1, the right column. None of the discussed structures consist of K2.3 smallest rhombellane. The next 
smallest tile in this respect is the adamantane ada.10, a tetrahedral tile (not a polyhedron), like K2.3; 

among the discussed hyper-clusters, those “filled” by ada.10 are candidates to the status of quasi-
rhombellanes (Table 2, entries 1.n). The disjoint vertex classes criterion seems to be fulfilled by virtue 
of repeating small fragments, like rhombs or hexagons, in conjunction with the symmetry of these 
fragments, in a fractalization process. 

Finally, the Omega polynomial criterion, the single polynomial term, 1X^e, is the most important 
among the five rhombellane criteria; is computed within two ring size limits, which define the maximal 
explored rings. In case of true rhombellanes, (rmin.rmax) is red (r4.r4), (or simply (4.4) in the above tables) 
while in case of quasi-rhombellanes, rmax refers to the maximum sized strong rings in the graph; often, 
it is necessary rmax+2, to ensure the visiting of all edges in the graph when Omega polynomial is 
calculated; also is necessary to have a ring population larger than 1 (see Table 2, entries 1.1, 1.3, 2.1) 
or even more, in case of larger structures (see Table 2, entries 5,n). In case of the smallest units: ada.10; 
rh12.14 and rh24.26 (Table 2, entries 1, 2 and 3) rmax-int refers to r8, which is not a face but is a strong 
ring (i.e., a ring that is not the sum of other smaller rings). 

The hyped-adamantane populated with (rh6.1.8), (see Table 2, entries 4) as well as the cube itself, 
do not show the 1X^e term; this is due probably to the fact that the line-graph of the cube (i.e., its 
medial, the octahedron) has all faces triangles; the same is for the “coalesced” cubes within these 
structures.  

The enlargement of ring size to be visited within the “orthogonal cut process” of Omega polynomial 
is needed in respect of finding the single polynomial term, 1X^e, that proves the existence of a 
Hamiltonian circuit in the “edge-graph”, or “line-graph” of the parent concerned graph.  No rational 
explanation was found so far for the rmax value needed to obey the 1X^e criterion. The empty cells of 
the Table 2 stand for the large circuits, computation of which is hard to be achieved, in more complex 
units and the corresponding hyper-adamantanes, also for the corresponding Omega polynomial. As 
above stressed, only the strong rings have to be considered in Omega polynomial count. 

 
3. Conclusions 
Hyper-clusters are polyhedral structures of which nodes are polyhedral structures, either the same 

or different ones. Then a hyper-adamantane, Hyp[ada.10](..).n is an ada.10 structure (the host structure), 
in which every vertex is replaced by a guest unit.  

Five triple periodic networks were designed by translating, along the orthogonal coordinate axes. 
Their hyper-adamantane units were tested with respect to the rhombellanic character. Topological 
details on the concerned structures were given. 
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