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Abstract: Matter is organized according to its constituents symmetry. Topological symmetry refers to the 

maximum possible symmetry achievable by a molecular structure; it is invariant to translations and rotations. 

Topological symmetry may be found either by permutations within the adjacency matrix of its associate graph 

or by calculating values of some topological indices. This paper presents the equivalence classes of 

substructures of some high rank and high genus clusters, with icosahedral and octahedral symmetry, designed 

by operations on maps and solved by using two topological indices: ring signature index RSI and centrality 

index C, computed both on isolated structures and selections “immersed” on the bulk networks. Design of 

multi-shell clusters was performed at TOPO GROUP CLUJ by the original CVNET and Nano Studio software 

programs. 
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1. INTRODUCTION 

Molecular topology reveals a symmetry different from the geometrical symmetry, namely the constitutional or 
topological symmetry, which is defined in terms of connectivity; its main goal is to find the equivalence 
relationship existing among the substructures of a molecular graph: vertices/atoms, edges/bonds, faces, etc. 
(Ashrafi et al. 2013; Diudea and Nagy 2007, 2013). 
Let X = {1,2,…,n}; a permutation group on X is a group Γ whose elements are permutations of X, e.g. bijective 
functions from X to X and whose group operation is the composition of permutations in Γ. The group of all 
permutations of X is the symmetric group of X denoted by SX or Sn, where X is finite and n = |X|. By this 
notation, a finite permutation group is a subgroup of the symmetric group Sn.  
An automorphism of the graph G= (V, E) is a bijection σ on V which preserves the edge set E, namely e = uv is 
an edge if and only if σ(e) = σ(u)σ(v) is an edge of E . Here, the image of vertex u is denoted by σ(u). The set of 
all automorphisms of a graph G, with the permutation composition operation, is a permutation group on V(G), 
denoted by Aut(G). Note that, in general, the symmetry group of a graph is a subgroup of its automorphism 
group. For example, in a fullerene graph, both of them are equal; in many other molecular graphs, such as 
dendrimers, the symmetry group is a proper subgroup of its automorphism groups.  
Example 1. Consider the molecular graph H2O of water molecule as depicted in Figure 1; the function  

                

1 2 3
 = (1,2)

2 1 3
f

 
 

   
is a symmetry element of this graph. Since a group is closed under the group operation (1,2)(1,2) = id, it is an 
automorphism of molecular graph of H2O. An identity permutation of the graph vertices is denoted by (). Hence, 
the automorphism group of this graph is represented as {(),(1,2)}. This group is isomorphic with the cyclic 
group C2. 
 

  
 

1 2

3

 
Figure 1: The graph of water molecule. 

 
The adjacency matrix A(G) of graph G with the vertex set V(G)= {v1, v2, . . . , vn} is the n×n symmetric matrix 
[aij] such that aij = 1 if vi and vj are adjacent and 0, otherwise.  Suppose  is a permutation on n atoms of the 
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molecular graph G under consideration and P is the permutation matrix of G. It is well-known that PP = P, 
for any two permutations  and  on n vertices of G and so the set of all nn permutation matrices is a group 
isomorphic to the symmetric group Sn on n symbols. To compute the automorphism of a graph it is sufficient to 
solve the matrix equation  
PtAP = A,                                                              (1) 
where A is the adjacency matrix of G and P varies on the set of all permutation matrices with the same 
dimension as A. In other words, if  is a permutation of vertices of G, then ( )Aut G  if and only if 

tP AP A   . 

 
Example 2. Consider the (labeled) graph of naphthalene (Figure 2, left). Let =(1,9)(2,10)(3,7)(4,8) and 
=(1,2)(3,4)(5,6)(7,8)(9,10) be two permutations of vertices of naphthalene molecular graph. We show that the 
permutation matrix of both of them satisfies Eq. (1). The adjacency matrix of the naphthalene graph and the 
permutation matrix with respect to  are as follows: 
 

0 1 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0

0 0 1 0 0 1 1 0 0 0
.

0 0 0 1 1 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 1 0

A

 
 
 
 
 
 
 

  
 
 
 
 
 
 
    

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1

0 0 1 0 0 1 1 0 0 0
.

0 0 0 1 1 0 0 1 0 0

1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0

P

 
 
 
 
 
 
 

  
 
 
 
 
 
 
    

 
It is not difficult to see that Pλ satisfies Eq.(1) and hence λ is an automorphism element. Similarly, we can prove 
that  is an automorphism and thus the permutation of its automorphism group is as follows: 
{(), (1,9)(2,10)(3,7)(4,8), (1,2)(3,4)(5,6)(7,8)(9,10), (1,10)(2,9),(3,8),(4,7),(5,6)}. 
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Figure 2.The molecular graphs of naphthalene (left) and 2,3 Dimethyl-butane (right) 
 
Suppose Γ1 and Γ2 are two groups and Γ2 acts on the set Ω. The wreath product of Γ1 ƪ Γ2 is defined as the set of 
all order pairs (f;λ) where 2  and f: Ω → Γ1 is a function, such that (f1; λ1)(f2; λ2)=(g; λ1λ2) where 

1
1 2( ) ( ) ( )g i f i f i . Observe that if Ω, Γ1 and Γ2 are finite then | Γ1ƪ Γ1| = | Γ1 ||Ω|| Γ2 |. Finally, consider the graph 

G depicted in Figure 2 (right). The symmetry group of G is Sym(G) = {(),(1,2)(3,4),(1,3)(2,4)(5,6),(1,4), 
((2,3)(5,6)}; it is isomorphic with the non-cyclic abelian group C2 × C2 of order 4 while the permutation (1,2) is 
a graph automorphism of G. On the other hand, it can be shown that Aut(G) = C2 ƪ C2, which is of order 8. All 
elements of Aut(G) are as follows: {(),(1,2)(3,4),(1,3)(2,4)(5,6), (1,4)(2,3)(5,6), (1,2),(3,4), (1,3,2,4)(5,6), 
(1,4,2,3)(5,6)}. Thus, ( ) ( )Sym G Aut G . 

In the theory of groups action (Hungerford, 1974), the group G is said to act on a set X if there is a function  
such that : G×XX and for any element xX, there exists the relation (g,(h,x))=(gh,x), for all g,hG, 
with (e,x)=x, e being the identity element of G. The mapping  is called a group action while the set {(gx) | 
g G} or xG (in brief) is called the orbit of x. Hence, xG ={xg: gG}. 
Suppose that G acts on X, for each xX, the stabilizer of x denoted by Gx is a subgroup of G and can be defined 
as follows: Gx = { gG: xg = x}. 
 
Orbit Stabilizer Theorem. Let G be a group acting on the set X. Then, for every element xX, the size of orbit 
xG is | xG | = [G: Gx]. Let also G be a group acting on a set X; for every element gG, denote by fix(g) the set of 
elements in X that are fixed by g namely, fixX(g) = { xX, xg = x}. 
Cauchy-Frobenius Lemma. The number of orbits of X under the action of G is:  
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1
| ( ) | .

| | g G
t fix g

G 
 

      (2) 
Consider now the graph G depicted in Figure 3. By the above notation, we have: 
1G = 2G = 3G = 4G = {1,2,3,4} ; 5G = 6G = {5,6}. 
On the other hand, |fix()| = 6, |fix((1,2)(3,4))| = 2, |fix((1,2))| = |fix((3,4))| = 4, |fix((1,3)(2,4)(5,6))| = 
|fix((1,4)(2,3)(5,6))| = |fix((1,3,2,4)(5,6))| = |fix((1,4,2,3)(5,6))| = 0. 
Hence, by using the above (eq. 2), we have:  
Number of orbits (equivalence classes) = (6 + 2 + 4 + 4 + 0 + 0 +0 + 0)/8 = 2. 
Namely, there are 2 orbits of size: 2, 4.  
Example 3. Consider the graph depicted in Figure 3. By using GAP program (GAP, 2014), one can see that 
Aut(G) = C2 × S4 (in Chemistry: C2 × Td) of order 2 × 24 = 48. There are 11 orbits, of size: 
8,8,6,6,24,24,24,24,24,6,6 respectively.  
 

 
Figure 3. A (labeled) graph on160 vertices. 
 
Suppose v1,v2,...,vm are m disjoint automorphic partitions of the set of vertices V(H), then: 1 2 ...v v vmV V V V     

and 
i jv vV V   . An invariant assigning the values Ini and Ini  to vertices i, jV will provide invariant classes of 

equivalence that may differ from the automorphism classes/orbits, since no vertex invariant is known so far to 
always discriminate two non-equivalent vertices in any graph. The classes of vertices may be ordered according 
to some rules.  

An embedding is a representation of a graph on a surface S such that no edge-crossing occurs 
(Harary, 1969). A polyhedral graph, embedded in an orientable surface S obeys the Euler’s theorem 
(Euler, 1752-3):  

( ) 2(1 )v e f S g          (3) 

where ( )S is the Euler characteristic and g the genus (i.e., the number of consisting simple tori). 

Positive/negative -values indicate positive/ negative curvature of a structure embedded in S. A surface is 
orientable, when it has two sides, or it is non-orientable, when it has only one side, like the Möbius strip. 

Curvature (see Diudea and Nagy, 2007) is the amount by which a geometric object deviates from the planarity; 
it is 

usually measured as the Gaussian curvature K, 2
S

KdS  ; a combinatorial curvature was also 

proposed (Klein and Liu, 1994; Babić et al. 2001; Higuchi, 2001; Klein, 2002). 

Euler characteristic can be calculated for general surfaces as the alternating sum of figures of 
dimension/rank (Schulte, 1985, 2014) k : 

            0 1 2 3( ) ...,S f f f f                                                        (4) 

                    
where f0 is a vertex, f1 is an edge, f2 is a face, f3 is a cell…fk being a facet of rank k; a structure will 
have the rank k if there are substructures/facets up to the rank k-1 and obey relation (4), that in case 
S=sphere, alternates 2 and 0 for odd and even rank, respectively. 
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2. DESCRIPTORS OF TOPOLOGICAL SYMMETRY 

2.1 Centrality index 

A layer matrix (Diudea, 1994) is built up on a layer partition of a vertex i in the graph H(V,E):  
( ) { ( ) , [0, ] ( ) }j i j ivH i H i j ecc and v H i d j    

  
where ecci is the eccentricity of i (i.e., the largest distance from i to the other vertices of the graph). The entries 
in a layer matrix, LM, collect the vertex property pv (a topological, chemical, or physical property) for all the 
vertices v belonging to the layer H(i)j: 

( )

[ ]
j

ij
v G i

vLM p


   located at distance j from vertex i. The matrix LM is 

defined as: LM(H) = {[LM]ij;  iV(H );  j  [0, d(H)] }, where d(H) is the diameter of the graph. The dimensions 
of the matrix is n×(d(H)+1); the zero-distance column is just the column of vertex properties. The most simple 
layer matrix is the vertex counting property. Hereafter, as a property is considered the number of rings R around 
each vertex while the layer matrix is named LR. Layer matrices are used to derive the indices of centrality 
C(LM), that quantify the centrality of vertices (Diudea and Ursu, 2003). 

  
2

1
1/( )2

1

( )
i i

ecc ecck

i ik
k

c LM LM




 
  
 


                 (5) 
2.2 Ring signature index 
 
Ring Signature Index RSI collects the rings around the vertices of a network, and is defined (Diudea, 2016; 
Nagy and Diudea, 2016) as follows: 

( ) sk
i s

P x s x        (6) 

`(1) / (1)i i iRS P P
 

(1/ ) ii
RSI qv RS   
In the above, ( ) sk

i s
P x s x  is the polynomial of „ring occurrence” or the „ring signature”, or even the 

„vertex configuration”, with s being the size of a „strong” ring occurring ks-times around each point i. Next, RSi 
calculates a „mean ring signature” as the ratio (in x=1) of the first derivative to the „zero” derivative of the ring 
occurrence polynomial. Finally, the summation of RSi over all vertices i is again mediated to the number of 
vertices and to the topological symmetry of the network, by the normalization with the number of vertex 
equivalence classes. 
 
3. STRUCTURE BUILDING 
 
Design of structures herein studied may be achieved by operations on maps. A map is a combinatorial 
representation of a (closed) surface, e.g., the polyhedral graphs. Several operations on maps are 
known and used for various purposes. More about such operations the reader can find in (Pisanski and 
Randić, 2000; Diudea et al. 2006; Diudea and Nagy, 2007; Diudea, 2004, 2005, 2010, 2013).   

Dual d(P) is obtained by putting a point in the center of each face of a polyhedron P, next 
joining two such points if their corresponding faces share a common edge. Vertices of d(P) represent 
faces in the parent polyhedron and vice-versa. Dual of the dual returns the original polyhedron: 
d(d(P)) = P. Tetrahedron T is self-dual while the other Platonics (cube C; octahedron O; 
dodecahedron D and icosahedron I) form dual pairs: d(C) = O; d(D) = I.  

Medial m(P) can be achieved putting a point in the middle of each parent edge and join two 
such points if the edges span an angle while the parent vertices are cut off. Medial is a 4-valent graph, 
symmetric between the parent and its dual, that is mdM=mM. The figure type of transformed map is: 
{e, 2e, e+2}.The medial operation rotates the parent s-gonal faces by π/s. By medial, edges of the 
parent polyhedron are reduced to a point; this property can be used in topological analysis of edges. 
Similarly, the points of the dual give information on the faces of a polyhedron. 

Truncation t(P) is achieved by cutting off the neighborhood of each vertex by a plane close 
to the vertex, such that it intersects each edge incident in the vertex. The resulted truncated map (i.e., 
polyhedron) is always a three-connected one. The truncated polyhedron is of the type {2e, 3e, e+2}, 
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where e denotes the number of edges in the parent object while the numbers within brackets refer, 
subsequently, to the vertices, edges and faces of the truncated transform. 

Polygonal pk(P) operation is achieved by adding a new vertex in the center of each face of a 
polyhedral graph, next put k-3 points on the boundary edges. Connect the central point with one 
vertex on each edge (the endpoints included): the parent face will be covered by triangles (k=3), 
squares (k=4) and pentagons (k=5), respectively. The transformed polyhedron is of the type: {(k-
2)e+2, ke, 2e}.  

Snub is the dual of p5 operation: s(P) = d(p5(P) and  s(P) = s(d(P)). The snub polyhedron is of 
the type: {2e, 5e, 3e+2}. In case P = T, the snub is the icosahedron: s(T) = I. 

Operation s2 can be achieved by putting four vertices on each edge of the parent map M (e4 
operation) and next join these new vertices in order (-1, +3): s2 = j(-1,+3)e4(P). It insulates the double 
sized parent faces by pentagons and parent vertices by pentagon k-multiples; the transformed objects 
are non-chiral. The transformed map is of the type: {v+4e, 7e, f+2e}. Map operation preserves the 
symmetry and genus of the parent structure. 

 
3.1 Multitori 

The building of multitori (Diudea and Petitjean, 2008, Diudea, 2010) herein studied may 
occur as a self-assembling of monomers; let us start from the cube C and make its snub, s(C), by 
dualizing the p5(C) transform (Figure 4, top); since p5-operation is prochiral, all the thansforms 
involving this map operation will be chiral structures. Suppose the snub cube is realized by atoms of 

different radius, e.g., one snub cube is made by Carbon atoms and the other by Silicon or Germanium, 
so that a „cage-in-cage” structure is obtained.  

  
(s(C)R.24=d(p5_2(C)).24 (s(C)S.24=d(p5_1(C)).24 

  
C48S=(s(C)R@s(C)R)7S.48 C48R=(s(C)S@s(C)S)7R.48 

Figure 4: Snub cube (top) and its dimer (bottom) as chiral pairs. 
 

A supplementary interaction along the diagonal of quadrilaterals generated on the borders of 
square parent faces will provide a snub „dimer” (Figure 4, bottom), each vertex/atom having the 
degree 7; since this diagonal may be drawn to the right or to the left, the number of pair isomers will 
increase accordingly (see below). Further, the dualization of a 7-connected dimer will provide a 
multitorus entirely covered by heptagonal faces. Two of such chiral pairs are illustrated in Figure 5: 
the constitutive name, map operation filiation, symmetry group and order, and the vertex equivalence 
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classes are included. These structures show the rank 3 or 4, as shown in Table 1 (Pk/Ak = 
prism/antiprism of k-basis). 

Table 1: Figure count in multitori derived from snub Cube 

Structure v e 3(2) 4(2) 7(2) 2 3 χ g Rank 

s(C) 24 60 32 6 0 38 0 2 0 3 
C112 112 168 0 0 48 48 0 -8 5 3 

d(C112) 48 168 112 48 0 160 40 0 0 4 

d(C112)   A4 P3 P3* M 3    
(details for 3)     6 8 24 2 40       

 

  
d{(s(C)R@s(C)R)7S.48}.112 

C112S=d(C48S).122 
S4; ORD 24  

Classes: 6: |2{8}; 4{24}| 

d{(s(C)S@s(C)S)7R.48}.112 
C112R=d(C48R).122 

S4; ORD 24  
Classes: 6: |2{8}; 4{24}| 

  
d{(s(C)R@s(C)S)7S.48}.112 

C2 x S4; ORD 48 
Classes: 3: |{16}; 2{48}| 

d{(s(C)R@s(C)S)7R.48}.112 
C2 x S4; ORD 48 

Classes: 3: |{16}; 2{48}| 
Figure 5:. Dual of snub cube dimers 

 
Data about the topological symmetry of C112 isomers are given in Table A2 (Additional 

Materials). 
 

3.2 Multishell clusters 
In the following the construction of three isomers, illuatrated in Figure 6, is detailed. 
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C60@C750.810 C130a@12C130a.810 

d(m(C45)204).810 
C130a@12C13a.810 
d(t(C45)408).810 

Figure 6: Multi-shell clusters of Icosahedral symmetry C2 X A5 and rank higher 
than 3 
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The cluster C810 = C60@C750.810 (i.e., C60@(12C20;20C24)@(60C20).810) of rank 4 (Table 2) was made 
by gluing C60 inside the central hollow of C750 (Figure 7); the last one can be designed (Stefu et al. 
2015; Diudea 2016) by the following sequence of operations: tsel(p4(C60)).330; s2(C60).420; 
tsel{p4(C60))@s2(C60)420}.750; the symbol tsel means the truncation of only selected vertices. Structure 
C750 = C60Y(60C20).750 is a “spongy” one, with the central hollow of exact topology of 
tsel(p4(C60)).330. Letter Y indicates that C750 is a “hyper-C60”, with the main topology of C60(Ih);  in 
this case, any atom/vertex in C60 is formally changed by a C20 cell. 
 

Table 2: Figure count for C810 and its precursor. 
Structu
re 

v e 5(2) 6(2) 2 C20 C24 M 3 χ Rank 

C750 75
0 

135
0 

642 20 662 60 0 2 62 0 4 

C810 81
0 

150
0 

744 40 784 72 20 2 94 0 4 

 
 Let now truncate the dual of C750, namely d(C750).630 cluster; the resulted structure, 
t(d(C750).630).3600 (Figure 8), is a hyper-C60 one, C60Y(60C60; 90P5).3600, with a whole C60 cluster 
instead of each vertex/atom in the parent C60; the C60-units are joined by pentagonal prisms P5. The 
cluster C3600 is a spongy-one, of rank 4 (Table 3), in other words, it is a multitorus embedded in a 
surface of genus 16 (χ = -30) (a similar structure was reported by Bhattacharya et al. 2016). 
 
Table 3: Figure count for C3600 and its precursor. 

 
 

Note that any cluster may be decomposed in several ways, some key-substructures being 
illustrated at the bottom of figures; accordingly, several names are used for a same structure, with the 
aim of a better detailing its composition. However, the fragment union (i.e., re-construction) finally 
will provide a single structure, the figures/substructures of which are counted to find its rank. Here, 
rank (Schulte, 1985, 2014) is preferred to the term “(space) dimension” since our description in a 
topological one, thus the geometric aspects (angles and bond length) are disregarded. 

Data about the topological symmetry of C750 and related structures are listed in Table A2 
(Additional Material). 
 

 

 

C750=C60Y(60C20).750  
tsel{P4(C60))@S2(C60)420}.750 

Structure v e 3(2) 4(2) 5(2) 6(2) 2 U Py4 P5 P6 M 3 χ g Rank

d(C750) 630 2250 1650 450 24 40 2164 60 450 12 20 2 544 0 0 4

t(d(C750)) 3600 5850 0 450 720 1200 2370 60 0 90 0 0 150 -30 16 4
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C2 X A5; Classes: 12: |10{60}; {120}; {30}| 
 

   
C60 tsel{P4(C60)).330 S2(C60).420 

Figure 7: A multi-shell cluster on 750 vertices 
 
 

 
C3600  

C60Y(60C60_P5).3600 
C60Y(60C60; 90P5).3600 

t(d(C750).630).3600 
C2 X A5; Classes: 32: |28{120}; 4{60}| 

 

   
d(C750).630 C3600 (5) C3600 (2) 

 
Figure 8: C3600 = Truncated dual of C750 

 
The two other clusters on 810 atoms in Figure 6 (middle and right) are derived from the 

Bergman cluster (Bergman et al. 1952; Duneau and Gratias, 2002) C45 (Figure 9), a cluster of rank 5 
(Table 4). 
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Table 4. Figure count in C45 and IP structures 

Structure v e 3(2) 2 T(3) U(3) 3 4 χ Rank 

C45 45 204 290 290 130 12 142 13 2 5 

IP 13 42 50 50 20 1 21 0 0 4 

 

 
C45 

IP@12IP.45 
(P12@I)@st(D)).45 

(IP)Y(12IP).45 
20T@(20T;30T)@60T.45 

C2 X A5; Classes: 4: |2{12}; {20}; {1}| 
 

 
  

P12@I.13=IP.13 st(D).32 I@st(D).44 
Figure 9:  C45 = Bergman cluster (details) 

 
The medial of C45, i.e. the cluster C204=m(C45) (Figure 10) transforms by dualization 

(d(m(C45)204).810) into C130a@12C130a.810 (Figure 3, middle), a cluster of rank 4 (Table 5).  
 
Table 5. Figure count in d(C204).810 (Rank 4) and related structures  
Struct
. v e 

2(3
) 

2(4
) 

2(5
) 2 

3(D;I
) 

3(C
) 

3(Py5

) 
3(mP5

) 
3(O

) M 3 χ 

810 
81
0 

225
0 690 780 228 

169
8 13 130 0 114 0 1 

25
8 0 

130a 
13
0 330 90 120 24 234 1 20 0 12 0 1 34 0 

204 
20
4 870 810 0 12 822 1 0 12 0 130 1 

14
4 0 

m(I) 42 150 130 0 12 142 1 0 12 0 20 1 34 0 
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m(C45).204 

C42@12C42.204 
I@(12I;20×(2O))@(30O;12(P@5O)16).204 
C2 X A5; Classes: 6: |2{60}; 2{12}; 2{30}| 

 

   
I@ID.42=C42 

M(IP).42 
C45 

IP@12IP.45 
C130a=D(C42).130 

C20@(12(M(P5));20C).130 
Figure 10:  C204 = medial of Bergman cluster 

 
 

Data about the topological symmetry of C750 and related structures are listed in Table A3 (Additional 
Material). 

The truncated C45, i.e. the cluster C408=t(C45) (Figure 11) transforms by dualization 
d(t(C45)408).810 into C130b@12C130b.810 (Figure 3, right), a cluster of rank 6 (Table 6). In addition, 
Table A4 (Additional Material) provides data about its topological symmetry. 

Details within the amazing structure C130b@12C130b.810 are shown in Figure 12; there are 
interlaced C230=ID@12ID.230 (with all degree 12 vertices, when is “endo” C230@C810) and 13 C20 
cells disjoint to each other (inside the C810 hull, as shown in the left-bottom corner of Figure 12). Note 
that C230=m(C20)@12m(C20).230 can be designed from  C20@12C20.130 by the medial operation. Data 
about the symmetry of C230 (free or “immersed” within C810) are provided in Figure 12 and in Table 
A5 (Additional Material). 

 
Table 6. Figure count in d(C408).810 and related structures (Rank 4 to 6). 

v e 2(3) 
2(5

) 
2(6

) 2 
3(T/TT

) U 3(A5) 
3(Pyk

) M 3 4 5 6 

810 3030 2770 342 120 3232 650 13 228 120 1 1012 13 13 0 
130b 450 410 36 30 476 100 1 24 30 1 156 2 2 - 
110 360 320 24 30 374 80 1 12 30 1 124 0 - - 
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50 150 110 24 0 134 20 1 12 0 1 34 0 - - 

408 1074 520 12 290 822 130 12 12 12 1 167 13 2 - 
84 192 80 12 50 142 20 1 0 12 1 34 0 - - 

 

 
t(C45).408 

C84@12C84.408 
(I@20×2TT)@(12I;30TT)@12(Py5@5TT)@C180.408 

C2 X A5; Classes: 10: |6{60}; 4{12}| 
 

   
t(IP).84=C84 C180(Ih) C130b 

d(C84).130 
C50@C110.130 

 
Figure 11: C408 = Truncated C45 cluster 

 
  

  
C230@C810_d(C408) 
C2 X A5; ORD=120 

Classes: 15: |10{60}; {120}; 3{20}; {30}| 

C230 = ID@12ID 
C2 X A5; ORD=120 

Classes: 5: |{30}; {20}; 3{60}| 
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Complement (C810-C230).580 

(13 C20, disjoint) 
C230 

(ID@12half(ID))@tD.110 
(yellow) 

 
Figure 12: Inside C810_d(C408) = C130b@12C130b.810 

 
Note that, with the Y-symbol for a hyper-structure, the name of the above clusters, and IP 

being the centered Icosahedron P12@I.13 (P12 meaning the central point connected to the 12 points of 
Icosahedron) can be written: (IP)Y(12IP).45; (IP)Y(12C130a).810; (IP)Y(12C130b).810; 
(IP)Y(12C42).204 and (IP)Y(12C84).408. From the above data, it is clear that all these clusters preserve 
the Icosahedral symmetry (i.e., C2 × A5; ORD 120) of the parent IP cluster (itself of rank 4). Also note 
that IP is the cell-dual of D@12D.130. (C2 × A5; Classes: 4: |2{20}; {30}; {60}|) .In the derived 
clusters above listed, the 12 units intersect to each other while a 13th one appears in the centre of 
structure (to be counted, or not  – see M = 1 in Tables 5 and 6). 

 
4. TOPOLOGICAL SYMMETRY OF COMPLEX CLUSTERS 

Multitori are graphs embedded in surfaces of high genera (Diudea and Nagy, 2007; Diudea 
and Petitjean, 2008). Tables 1 and 3 show negative values for Euler characteristic (χ = -8; g= 5 and χ 
= -30; g = 16) for C112 and C3600, respectively, meaning the embedding surfaces have negative 
curvatures. Accordingly, C112 is of rank 3 while C3600 of rank 4, meaning the two characteristics: 
genus and rank (both of them contributing to the structure complexity) do not exclude, on the 
contrary, join to build the beauty of a structure. Majority of the herein studied structures have ranks 
between 4 and 6 (see Tables 1 to 6). In addition, the multitori C112 are chiral, a molecular property. 

Searching for the atom classes by face/ring count provides the „chemical atom type” if the 
rings around each atom (counted by RSI – Eq. 6) are „strong rings” („strong” denoting a ring that is 
not the sum of other smaller rings – Blatov et al. 2010); however, by enlarging the rings to „circuits” 
of various length (the upper bound involves the counting of circuits of length 2d+1, d being the 
diameter of the graph), then different, topologically distinct, vertex classes are revealed (finally 
correctly discriminating all the classes of a graph, as given by performing the permutations within the 
adjacency matrix, a much more time-consuming procedure). If the „ring signature” is collected in a 
layer matrix (Diudea, 1994; Diudea and Ursu, 2003), the centrality index calculated on it, cf. Eq. 5, 
will distinguis all these distinct vertices, at the early level of strong rings (see Tables A1 to A5). The 
same vertex classes are obtained with the layer matrix of topological distances, an even faster 
procedure, compared to the ring counting. An example of topological symmetry calculation is given 
in Table 7 (while for the other herein discussed structures data are given in Additional Materials.  

 
Table 7. Topological symmetry by ring count (cf. Eqs. 6) and centrality C-
index (cf. Eq. 5) (in decreasing order of centrality) in C810_d(C408) and its 
relatives. 
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 Structure 

(RSI) 
Rmin Rmax Deg Signature 

(Cmin; Cmax) 
Classes  

{elements} 
2 C84 3 6 6 3^5.5^5.6^25      3: {12}; 
 (1.377551)   6 3^5.6^5    {12}; 
    4 3^2.5.6^3   {60} 
 LM(C84) 3 6 6 (0.149447)      3: {12}; 
    6 (0.118464)    {12}; 
    4 (0.097012)   {60} 
4 C408 3 6 6 3^5.5^5.6^25  6: {156}; 
 (1.246499)   6 3^5.5^2.6^6     {60}; 
    5 3^3.5^2.6^8    {60}; 
    6 3^5.6^5    {12}; 
    4 3^2.5.6^6    {60}; 
    4 3^2.5.6^3   {60} 
 LM(C408) 3 6 4; 5; 6 (0.095120)     10:4×{12}; 
     (0.057074)          6×{60} 
5 C810 = 

d(C408) 
3 6 12 3^21.5^3.6^60   7: {110}; 

 (8.116238)   12 3^21.5^2.6^41     {60}; 
    12 3^21.5^2.6^40     {60}; 
    6 3^6.5^3.6^33       {280}; 
    6 3^6.5^2.6^24     {60}; 
    6 3^9.6^3     {60}; 
    5 3^5.5.6^13      {180} 
 LM(C810) 3 6 (5;6;12) (0.104546) 

(0.065660) 
15: 3×{20}; 

{30};10×{60} 
{120} 

  
These theoretical tools, implemented in the Nano Studio software (Nagy and Diudea, 2009) 

enable the study the topological symmetry of rather complex structures. The structures were designed 
by CVNET  software (Stefu and Diudea, 2005), the both programs being developed at TOPO 
GROUP, „Babes-Bolyai” University, Cluj, Romania. The classes found by C-index were confirmed 
by permutations on the corresponding adjacency matrix, performed by Mathematica and GAP 
software (Groups, Algorithms and Programming, http://www.gap-system.org.). 

 
 

5. CONCLUSIONS 
 
Topological symmetry may be calculated either by permutations on the adjacency matrix of its 
associate graph or by calculating the equivalence classes of substructures by some topological indices. 
In this paper, the vertex equivalence classes of some high rank and high genus clusters, with 
icosahedral and octahedral symmetry, were obtained by using two topological indices: ring signature 
index RSI and centrality index C; these parameters were computed, by the original Nano Studio 
software, both in isolated structures or in selections “immersed” on the bulk networks and the results 
were confirmed by permutation calculations, performed by the GAP software. Design of high rank 
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and genus multi-shell clusters was performed at TOPO GROUP CLUJ by the original CVNET and 
Nano Studio software programs. 
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