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1. Introduction 

A regular polyhedron has congruent regular polygons as faces, arranged in the same way around 
identical vertices; the symmetry group acts transitively on its flags, a regular polyhedron being vertex, 
edge- and face-transitive [1,2]. There are three symmetry groups: tetrahedral; octahedral (or cubic) and 
icosahedral (or dodecahedral). Any shapes with icosahedral or octahedral symmetry will also include 
the tetrahedral symmetry. 

There are five regular polyhedra, known as Platonic solids: tetrahedron (T), cube (C), 
octahedron (O), dodecahedron (D) and icosahedron (I), written as {3,3}; {4,3}; {3,4}; {5,3} and {3,5}, 
with the Schlӓfli [3] symbols {p,q} where p is the number of vertices in a given face while q is the 
number of faces containing a given vertex. The Platonic solids show pair duals: (cube & octahedron) 
and (dodecahedron & icosahedron) while the tetrahedron is selfdual. Duality is closely related to 
reciprocity or polarity, a geometric operation transforming a convex polyhedron into its dual, this also 
being a convex polyhedron. 

Generalization of a polyhedron to n-dimensions is called a polytope [1,4]. Regular 4-polytopes 
{p,q,r} have cells of the type {p,q}, faces {p}, edge figures {r} and vertex figures {q,r}; in words, r-
polyhedra (of the type {p,q}) meet at any edge of the polytope. There are six regular 4-polytopes: 5-
cell {3,3,3}; 8-cell {4,3,3}; 16-cell {3,3,4}; 24-cell {3,4,3}; 120-cell {5,3,3} and 600-cell {3,3,5}. Five 
of them can be associated to the Platonic solids but the sixth, the 24-Cell, has no 3D equivalent. Among 

them, 5-cell and 24-cell are self-duals while the others are pairs: (8-cell & 16-cell); (120-cell & 
600-cell). 

The n-simplex is a generalization of the triangle or tetrahedron to n-dimensions; it has the 

Schlӓfli symbol {3n−1} and the number of k-faces  1
1

n
k

 . A regular n-simplex can be constructed from a 

regular (n −1)-simplex by connecting a new vertex to all original vertices.  
The hypercube Qn is a generalization of the 3-cube to n-dimensions; the Schlӓfli symbol is 

{4,3n−2} and the number of k-faces is given by  2n k n
k

 . The hypercube can be constructed by the 

Cartesian product graph of n edges: 2( ) n
nP Q ; the Q4 hypercube is called 8-cell or also Tesseract. 
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The n-orthoplex or cross-polytope has the Schlӓfli symbol {3n−2,4} and k-faces  1
12k n

k


 ; it is 

the dual of n-cube. The cross-polytope facets are simplexes of the previous dimensions, while its vertex 
figures are cross-polytopes of lower dimensions. 

For general surfaces, Euler [5] characteristic χ can be calculated as an alternating sum of 
figures of rank k [6-8]:  

  0 1 2 3( ) ...,S f f f f       

An abstract polytope is a structure that considers only the combinatorial properties of a classical 
polytope: angles and edge lengths are disregarded. No space, such as Euclidean space, is required to 
contain an abstract polytope [6-8]. An abstract polytope is a partially ordered set (poset). Every polytope 
has a dual, of which the partial order is reversed; the dual of a dual is isomorphic to the original. A 
polytope is self-dual if its dual is the same (i.e., isomorphic to) as the parent. Any abstract polytope may 
be realized as a geometrical polytope having the same topological structure. 

Propellane is an organic molecule consisting of triangle (R3) rings, a hydrocarbon with formula 
C5H6, first synthesized in 1982 [9]; Its reduced species, C5H8, has only square (R4) rings; it can be 
represented as K2,3 - the complete bipartite graph; it is the smallest rhombellane, rbl.5. The two bridge 
carbon atoms of the K2,3 motif can polymerize, providing a one-dimensional polymer, called staffane 
[10]. 

A general procedure, called “rhombellation”, to build generalized rhombellanes, was given and 
illustrated elsewhere [11-13]. 

A structure is a rhombellane if all the following conditions are obeyed [11,12,14-16]: (1) All 
strong rings are squares/rhombs; (2) Vertex classes consist of all non-connected vertices; (3) Omega 
polynomial has a single term: 1X^|E|; (4) Line graph of the original graph shows a Hamiltonian circuit; 
(5) Structure contains at least one smallest rhombellane rbl.5.  

Omega polynomial Ω(x) was defined by Diudea (2006) [17,18] on the ground of opposite edge 
strips ops in the graph: Ω(x) = Ʃs msXs. Its first derivative (in x = 1) counts the number of edges “e” in 
a graph: Ω`(1) = Ʃs sms = |E(G) = e|. There are graphs with a single ops, which is a Hamiltonian circuit 
of their line-graphs [x]. For such graphs, Omega polynomial has a single term: Ω(x) = 1X e.  

The smallest rhombellane, rbl.5, is the complete bipartite K2.3, graph; any K2.n graph fulfils the 
five above conditions for rhombellanes. Any K2.n graph contains n(n-1)(n-2)/6 smallest units rbl.5 = 
K2.3. There are graphs with more than two vertex classes obeying the above conditions, namely those 
designed by the rhombellation operation. 

2. Qn rhombellanes 

In this paper, a single iteration of rhombellation operation applied on the hypercube Qn is 
considered; this results in a single shell (i.e., generation) of Qn-rhombellanes, rbl(Qn). Figure 1 illustrates 
this operation on the Tesseract, Q4 [2]; the number suffixing the name of structures counts their vertices. 

Rhombellation adds, at each iteration, a shell consisting of double the number of rhombs in the 
parent all-rhomb shell (considerations are herein made about the sphere embedded structures). Counting 
the number of vertices, one can write:  

v(Bn+1)= v(Bn)+v(Shn) = v(Bn)+2(v(Bn)-1); v(Qn+1)=2×v(Qn); Bn=rbl(Qn); shn=sh(rbl(Qn);). 
There is a correspondence between the shell, shn, added at each rhombellation operation and 

the shell of Qn+1, as can be seen in Table 1 (4th and last columns). Difference in edges: e(rbl(Qn) - 
sh(rbl(Qn))) (Table 1, last column) equals the number of rhombs R4 in Qn+1. The number of rhombs in 
rbl(Qn) is a function of the number of rhombs R4(Qn) and the dimension/rank n: R4(rbl) = R4(Qn) × (n(n 
+ 7)/2 - 6). However, rbl-operation tends to enlarge the sphere of which the previous shell is embedded 
while Qn operation (a graph product by the path p2) goes in the curled n-space: for each cube-facet, 
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Rh6.8, by rbl-operation, results a rhomb-dodecahedron, Rh12.14 (see Fig.1). These operations are not 
commutative, when applied on a same graph. Other two operations involved in rhomb tessellation, the 
medial and Poincarė dual: mkd=(md)k; the medial may be reiterated. Calculation of rank n [2] in Q4-
rhombellane (Table 2) shows k(rbl(Q4)) = 5, one more than the parent Q4. 

 

   

rbl(Q4).56 sh(rbl(Q4).56).40 Rh12.14 

Figure 1. Rhombellane of Tesseract, Q4. 

 
 Recall that, a vertex figure of an n-polytope is an (n-1)-polytope (e.g. the vertex figure of a 4-
polytope is a 3-polytope, or a polyhedron) [2]. A subgraph of an n-polytope, having at least one vertex 
of deg=n-2, is a tile, tn-1. In the Euler’s alternating sum, a tile tn-k is counted as an fn-k facet (see Table 2). 
 
Table 1. Topology of Qn and their rhombellanes. 

n v(Qn) e(Qn) R4(Qn) v(rbl(Qn)) e(rbl(Qn)) R4(rbl(Qn)) v(sh*) e(sh) R4(sh) v(rbl(Qn)-sh) e(rbl(Qn)-sh) 

3 8 12 6 22 48 54 14 24 12 8 24 

4 16 32 24 56 176 384 40 96 96 16 80 

5 32 80 80 144 560 1920 112 320 480 32 240 

6 64 192 240 368 1632 7920 304 960 1920 64 672 

7 128 448 672 928 4480 28896 800 2688 6720 128 1792 

*sh= sh(rbl(Qn)) 
 
In a previous paper, Diudea [16] defined more strictly the Omega-criterion of rbl-structures: 

Ω(Rmin.Rmax) = Ω(4.4) = 1X^e. All the shells sh(rbl(Qn)), n = 4,5…are rhombellanes (i.e., obey the five 
rbl-criteria – see the introduction), except for n = 3, for which Ω(sh(rbl(Q3));(4.4)) = 4X^6; even there 
is a single term for Rmax = 8, Ω(sh(rbl(Q3));(4.8)) = 1X^e =1X^24, it does not contain rbl.5, thus being 
neither a rhombellane, rbl nor a quasi-rhombellane, qrbl structure. 

 
Table 2. Q4-rhombellane rank calculation 

Structure v e R4 R6 Rtot rbl.5 Cube Rh12.14 f3 f4 X k 

rbl.5 5 6 3 0 3 0 0 0 0 0 2 3 

Cube 8 12 6 0 6 0 0 0 0 0 2 3 

Rh12.14 14 24 12 0 12 0 0 0 0 0 2 3 

Q4 16 32 24 0 24 0 8 0 8 0 0 4 

sh(rbl(Q4).56) 40 96 96 0 96 32 0 8 40 0 0 4 

rbl(Q4).56 56 176 384 96 480 344 8 8 360 2 2 5 

 
 The values returned by Omega polynomial depends on the rings taken into account: Rmin and 
Rmax; these values are put in round brackets. Also, the layer of rings matrix, LR (see below), evidenced 
different values: one for (Rmin.Rmin) (that correspond to the ring symbol) and a different one for 
(Rmin.Rmax) (see Tables A4 and A5). 
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3. Other high-dimensional cells 

The 24-Cell is a convex regular 4-polytope [2], also called “icositetrachoron”, “octaplex”, or 
polyoctahedron”; it consists of 24 octahedral cells, with six of them meeting at each vertex and three at 
each edge; its vertex figure is a cube. The 24-cell is the unique self-dual regular polytope which is 
neither a polygon nor a simplex; by this reason, it has no analogue in 3D. 

The first 8 vertices of 24-cell are the vertices of a regular 16-cell while the remaining 16 are the 
vertices of the dual 8-cell, or the tesseract Q4.16. It can be constructed either by medial (i.e., rectification) 
of 16-cell, m(16-cell), or by dualization of 8-cell, d(8-cell). There are several 3D projections of 24-cell, 
of which envelopes are the rhombic dodecahedron Rh12.14, cuboctahedron CO, hexagonal bi-antiprism, 
elongated hexagonal bipyramid or a tetrakis hexahedron (also named stellated cube st(C)). 

Keeping in mind the projection of 24-cell with a st(C) envelope, a construction of 24-cell as 
all-body-centered hypercube Q4.8CP8.24, (joining eight body-centered CP8.9 cube units) was proposed 
by Diudea [11] (Fig. 2).  

 

    
24-Cell.24 Q4.8CP8.24 st(CP8).15 CP8.9  

Figure 2. 24-Cell related structures 

4. Hypercube rhombellane relatives 

By deleting, in an alternating manner, four edges incident at each central point of CP8.9 in 
Q4.8CP8.24 (Fig.2) it results in a new structure, Q4.8CP4.24(sa) (Fig. 3); the unit is now CP4.9 (having 
rbl.5 =10). There are eight CP4 facets (of rank k = 4) binding Q4.8CP4.24(sa); each pair of CP4 facets 
shares a facet of rank k = 3, namely the unit rbl.5; thus, Q4.8CP4.24(sa) is a 5-polytope (k = 5).  

In the figure count (Table 3), two adamantane ada units (k = 3) and eight hexagons R6 (one for 
each Q3 face) were considered (see Fig. 3, middle and right); adamantane is a tile, like rbl.5. The total 
number of rbl.5 = K2.3 is 128 = 80 + 4 × 12, the last term coming from K2.4. The cluster Q4.8CP4.24(sa) 
[11], above described, is specified as “sa” = (syn.anti), to be differentiated by its isomer “aa” = 
(anti.anti); this specifications refer to the manner of connecting the two shells of structures to the cube 
centered points. Figure count data for Q4.8CP8.24 and Q4.8CP4.24 [11] are given in Table 3. 

 
Table 3. Figure count in Q4 related structures [11]. 

Polytope v e R3 R4 R6 2 K2.3 K2.4 Ada(Py4)* 3 4 χ k 

CP8 9 20 12 6 0 18 0 0 (6) 7 - 0 4 

Q4.8CP8 24 96 96 0 0 96 0 0 0 24 - 0 4 

CP4 9 16 0 18 0 18 10 0 0 11 - 0 4 

Q4.8CP4(sa) 24 64 0 120 8 128 80 12 2 94 8 2 5 

* Ada=adamantane tile; Py4 is the square-based pyramid. 
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Q4.8CP4.24 (sa) Ada.CP4.15 (inside) Ada.CP4.15 (outside) 

Figure 3. A rhombellanic hypercube Q4 relative (left); inside (middle) and outside (right) details [11]. 

 
Omega polynomial of the two hyper-cuboids consists of a single term, Ω(4.4) = 1X^e, saying 

that all their edges are topologically parallel and thus the structures are rhombellane. The vertex classes 
have all non-connected points. The 24-Cell, Q4.8CP8.24, has Ω (3.3): 96X^1, and its vertex single class 
have connected vertices; it is not a rhombellane.  

Topology of structures herein discussed is basically characterized by sequences of connectivity 
(LC) and rings around vertex (LR) [19,20]. When all the strong rings are counted, the LR matrix 
evidenced different values: one for (Rmin.Rmin) (that correspond to the ring symbol) and a different one 
for (Rmin.Rmax). Topology of the two isomers of Q4.8CP4.24 is given in Table A5. Computations have 
been done by the Nano-Studio software program [21]. 

Conclusions 

Generalized rhombellanes are designed by Diudea’s rhombellation procedure. Rhombellanes 
have all the edges topologically parallel, as shown by the single term in Omega polynomial, at the ring-
count (4.4) (further involving Hamiltonian circuits visiting their edges). Rhombellanes consist of at 
least one rbl.5 subgraph. New n-polytopes, n = 4, 5, related to hypercube Q4 were proposed and their 
structures characterized by sequences of connectivity (LC matrix) and rings around vertices (LR 
matrix). 

Rhombellanes represent a new class of structures, with interesting properties, both in theory 
and applications. 

 
 Acknowledgements. Computer support from Dr. Csaba Nagy is highly acknowledged. 

 

 References 

1. H.S.M. Coxeter, Regular Polytopes, 3rd Ed. New York, Dover, 1973. 
2. M. V. Diudea, Multi-shell polyhedral clusters, Springer, 2017. 
3. L. Schläfli, Theorie der vielfachen Kontinuität Zürcher und Furrer, Zürich, 1901 (Reprinted in: Ludwig 

Schläfli, 1814–1895, Gesammelte Mathematische Abhandlungen, Band 1, 167–387, Verlag Birkhäuser, 
Basel, 1950) 

4. B. Grünbaum, Convex Polytopes (2nd Ed.) Graduate Texts in Mathematics 221, Kaibel, Klee, Ziegler 
Eds. Springer, New York, 2003. 

5. L. Euler, Elementa doctrinae solidorum. Novi Comm. Acad. Scient. Imp. Petrop. 1752-1753, 4, 109–
160. 

6. E. Schulte, Regular Incidence Complexes. PhD Disertation, Dortmund Univ. 1980. 
7. E. Schulte, Regular incidence-polytopes with Euclidean or toroidal faces and vertex-figures. J. Combin. 

Theory, Series A, 1985, 40(2): 305–330. 
8. E. Schulte, Polyhedra, complexes, nets and symmetry. Acta Cryst. A, 2014, 70, 203-216. 
9. K. B. Wiberg, F. H. Walker, [1.1.1]Propellane. J. Am. Chem. Soc. 1982, 104 (19), 5239–5240.  



J. Eur. Soc. Math. Chem. | 2019 1(1): 3 

6 

10. P. Kazynsky, J. Michl (1988), [n]Staffanes: a molecular-size tinkertoy construction set for 
nanotechnology. Preparation of end-functionalized telomers and a polymer of [1.1.1]propellane. J. Am. 
Chem. Soc. 1988, 110 (15), 5225–5226. 

11. M. V. Diudea, Hypercube related polytopes, Iranian J. Math. Chem. 2018, 9 (1), 1-8. 
12. M. V. Diudea, Rhombellanic crystals and quasicrystals, Iranian J. Math. Chem, 2018, 9 (3), 167-178. 
13. B. Szefler, P. Czeleń, M.V. Diudea, Docking of indolizine derivatives on cube rhombellane 

functionalized homeomorphs, Studia Univ. “Babes-Bolyai”, Chemia, 2018, 63 (2), 7-18. 
14. M. V. Diudea, C. N. Lungu, C. L. Nagy, Cube-rhombellane related structures: a drug perspective. 

Molecules 2018, 23 (10), 2533; doi:10.3390/molecules23102533. 
15. M. V. Diudea, Rhombellanic diamond. Fullerenes, Nanotubes and Carbon Nanomaterials, 2018 (Doi: 

10.1080/1536383X.2018.1524375). 

16. M.V. Diudea, Rhombellanes and quasi-rhombellanes. J. Eur. Soc. Math. Chem. 2018, 1 (1) 
000. 

17. M.V. Diudea, Omega polynomial, Carpath. J. Math., 2006, 22, 43–47. 
18. M.V. Diudea, S. Klavžar, Omega polynomial revisited, Acta Chem. Sloven. 2010, 57, 565–570. 
19. M. V. Diudea, O. Ursu, Layer matrices and distance property descriptors, Indian J. Chem. A, 2003, 42, 

1283-1294. 
20. C.L. Nagy, M.V. Diudea, Ring signature index, MATCH Commun. Math. Comput. Chem., 2017, 77, 479-

492. 
21. C. L. Nagy, M.V. Diudea, Nano-Studio software, Babes-Bolyai University, Cluj, 2009. 

 
 
 
 Appendix 
 
Table A1. Omega polynomial in hypercube, rhombellane and its shell; (Rmin.Rmax) 

Omega (4.4)   (4.8)     

n Qn rbl(Qn) sh(rbl(Qn)) Qn 
rbl(Qn) 
(rbl.5) 

sh(rbl(Qn)) 
(rbl.5) Type Shells 

3 3x^4 1x^48 4x^6 3x^4 
1x^48 
(22) 

1x^24 
(0) non-rbl 1 

4 4x^8 1x^176 1x^96 4x^8 
1x^176 
(344) 

1x^96 
(32) rbl 2 

5 5x^16 1x^560 1x^320 5x^16 
1x^560 
(3120) 

1x^320 
(320) rbl 4 

6 6x^32 1x^1632 1x^960 6x^32 
1x^1632 
(20560) 

1x^960 
(1920) rbl 8 

7 7x^64 1x^4480 1x^2688 7x^64 
1x^4480 
(110432) 

1x^2688 
(8960) rbl 16 

 
 
Table A2. Vertex classes in hypercube and its rhombellane (joint substructures-in italics): vertex symbol vsm; 
m=1-5 (no. vertices in a class; vertex degree). 

n v(Qn) vs1(no; deg) vs2(no; deg) vs3(no; deg) vs4(no; deg) vs5(no; deg) 

3 22 4^6(4;3) 4^15(4;6) 4^6(4;3) 4^14(6;6) 4^6(4;3) 

4 56 4^45(8;10) 4^27(8;6) 4^28(24;6) 4^24(8;6) 4^12(8;4) 

5 144 4^20(16;5) 4^44(80;6) 4^105(16;15) 4^75(16;10) 4^60(16;10) 

6 368 4^165(32;15) 4^210(32;21) 4^62(240;6) 4^120(32;15) 4^30(32;6) 

7 928 4^42(64;7) 4^82(672;6) 4^315(64;21) 4^378(64;28) 4^210(64;21) 

 
 
Table A3. Vertex classes in hypercube rhombellane: connectivity sequence, by LC (see text). 

n  v(Cls)  LC1  LC2  LC3  LC4  LC5  
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3 
  

4.4.4.6.4 
 3.10.7.1 3.9.7.2 3.9.9 6.10.4.1 6.8.6.1 

4 
  

8.8.24.8.8 
 10.17.22.6 4.24.19.7.1 6.14.25.9.1 6.17.26.6 6.18.18.13 

5 
  

16.80.16. 
16.16 10.20.71.25.15.2  10.26.75.20.11.1 15.26.70.20.11.1 5.50.36.45.7 6.32.36.62.6.1 

6  

32.32.240
. 

32.32 15.27.166.55.90.13.1 15.37.176.50.81.8 21.37.170.50.81.8 6.50.60.198.30.23 6.90.62.165.27.16.1 

7  

64.672 
64.64.64 

21.35.337.105.350.49.28.
2 

21.50.357.105.336.35.22.
1 

28.50.350.105.336.35.22.
1 

6.72.90.495.90.167.6.
1 

7.147.99.455.77.133.
9  

 
Table A4. Vertex classes, sequence of connectivity (LC) and rings around vertex (LR) in sh(rbl(Qn)); ring count 
at (4.4). 

n/v(Sh*) 
Class 
(no. vertices; degree) LC1 LC2 LR1 LR2 

3/14 
Cls1: 43(8;3) 
Cls2: 44(6;4) 3.6.3.1 4.4.4.1 3.12.18.12.3 4.12.16.12.4 

4/40 
Cls1: 412(16;6) 
Cls2: 48(24;4) 6.10.18.5 4.12.12.11 12.48.120.144.60 8.48.96.144.88 

5/112 
Cls1: 412(80;4) 
Cls2: 430(32;10) 4.24.24.54.4.1 10.15.60.15.10.1 12.120.288.720.648.120.12 30.120.450.720.450.120.30 

6/304 
Cls1: 416(240;4) 
Cls2: 460(64;15)  4.40.40.178.20.21 15.21.150.35.75.7 16.240.640.2400.2848.1200.336 60.240.1260.2400.2100.1200.420 

7/800 
Cls1: 420(672;4) 
Cls2: 4105 (128;21) 

 4.60.60.455.60. 
155.4.1 

21.28.315.70.315. 
28.21.1 

20.420.1200.6300.9100.6300. 
3100.420.20 

105.420.2940.6300.7350.6300. 
2940.420.105 

 
Table A5. Sequence of connectivity (LC) and rings around vertex (LR) in all-centered 8-Cell (Tesseract), Q4.8CPn.24; n=4; 
8. 

Polytope 
Rings 
rbl.5 

LC LR Ω 
(Rmin.Rmin) 
(Rmin.Rmax) 

Vertex no. 
in classes 

 

Degree Vertex 
symbol 

Q4.8CP4.24 (aa)   rbl    

R4=132 
R8=144 

rbl.5=104 

4.8.10.1 
4.12.6.1 
5.12.5.1 
7.8.7.1 

 

12.84.240.180.12 (4.4) 
16.120.232.144.16 (4.4) 
21.132.222.132.21 (4.4) 
30.132.204.132.30 (4.4) 
24.252.792.588.24 (4.8) 
56.396.728.444.56 (4.8) 
63.420.714.420.63 (4.8) 
99.420.642.420.99 (4.8) 

Ω (4.4): 1X^64 
Ω (4.8): 1X^64 

 

2 
6 
8 
8 
 

4 
4 
5 
7 
 

4^12.8^12 
4^16.8^40 
4^21.8^42 
4^30.8^69 

 

Q4.8CP4.24 (sa)   rbl    
 R4=144 
R8=216 

rbl.5=128 

4.14.4.1 
8.6.8.1 

 

18.144.252.144.18 (4.4) 
36.144.216.144.36 (4.4) 
72.576.1008.576.72 (4.8) 

144.576.864.576.144 (4.8) 

Ω (4.4): 1X^64 
Ω (4.8): 1X^64 

 

16  
8 
 

4 
8 
 

4^18.8^54 
4^36.8^108 

 

Q4.8CP8.24   not rbl    
R3=96 
R6=16 
rbl.5=0 

8.14.1 
 

12.96.168.12 (3.3) 
16.128.224.16 (3.6) 

 

Ω (3.3): 96X^1 
Ω (3.6): 48X^2 

 

24 
(connected) 

8 
 

3^12.6^4 
 

 


