STUDIA UBB CHEMIA, LXI, 3, Tom I, 2016 (p. 29-38) (RECOMMENDED CITATION)

Dedicated to Professor Luminița Silaghi-Dumitrescu on the occasion of her 65th anniversary

THE QUEST FOR BRIDGING TRIFLUOROPHOSPHINE LIGANDS IN TRANSITION METAL COMPLEXES

ROBERT BRUCE KING^{1*}

ABSTRACT. Trifluorophosphine is a strong back-bonding ligand like the ubiquitous carbonyl ligand. In fact mononuclear zerovalent trifluorophosphine complexes such as $M(PF_3)_6$ (M = Cr, Mo, W), $M(PF_3)_5$ (M = Fe, Ru), and $M(PF_3)_4$ (M = Ni, Pt) are even more stable than their well-known carbonyl analogues. However, metal complexes with bridging trifluorophosphine ligands are virtually unknown. We review theoretical studies on the Co₂(PF₃)₈, Fe₂(PF₃)₉, and Cp₂Fe₂(PF₃)_n (Cp = η^5 -C₅H₅; *n* = 4, 3) systems analogous to the well-known metal carbonyls Co₂(CO)₆(μ -CO)₂, Fe₂(CO)₆(μ -CO)₃, Cp₂Fe₂(CO)₂(μ -CO)₂, and Cp₂Fe₂(μ -CO)₃ containing two or three bridging CO groups. In most cases structures having features other than bridging PF₃ groups are energetically preferred.

Keywords: Trifluorophosphine, iron, cobalt, density functional theory

INTRODUCTION

The use of carbon monoxide as a ligand to stabilize low transition metal oxidation states dates back to the discovery of nickel tetracarbonyl in 1890 as a volatile liquid containing formally zerovalent nickel [1]. Other transition metals were subsequently found to form similar zerovalent binary metal carbonyls as exemplified by $Cr(CO)_6$, $Mn_2(CO)_{10}$, $Fe(CO)_5$, and $Co_2(CO)_8$. A key to the stabilization of formally zerovalent transition metal derivatives is the removal of electron density from the metal atom by $d\pi \rightarrow p\pi^*$ back-donation from filled metal d orbitals into empty $CO \pi^*$ antibonding orbitals.

¹ Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.

^{*} Corresponding author: rbking@chem.uga.edu

The unusual properties of the CO ligand in stabilizing low oxidation states stimulated the search for other ligands with similar properties. In this connection Wilkinson and Irvine [2] in 1951 discovered the binary zerovalent nickel trifluorophosphine complex Ni(PF₃)₄, as a volatile liquid considerably more stable than Ni(CO)₄. Subsequent work led to the extensive development of metal trifluorophosphine chemistry, particularly in the laboratories of Kruck et al. Thus reactions of phosphorus trifluoride under pressure with various transition metal derivatives led to a variety of metal very stable trifluorophosphine complexes [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] The strong back-bonding of the trifluorophosphine ligand in metal trifluorophosphine complexes can be related to the the electron withdrawing properties of its three highly electronegative fluorine atoms [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Thus PF₃ ligands, like CO ligands, stabilize low formal oxidation states so that zerovalent metal derivatives, such as Cr(PF₃)₆, Fe(PF₃)₅, and Ni(PF₃)₄, are essentially stable towards air oxidation. In addition, their volatility is comparable to the analogous metal carbonyls despite their considerably higher molecular weights. In addition several binary zerovalent metal trifluorophosphine complexes without currently known stable homoleptic metal carbonyl counterparts are known including $M_2(PF_3)_8$ (M = Rh, Ir) [23], Pt(PF_3)_4 [24, 25, 26] and Pt_4(PF_3)_8 [27]. This suggests that PF₃ is even better than CO in stabilizing low transition metal oxidation states. In addition to the strong back-donation of PF3 ligands, the greater steric protection of the central metal atom by multiple PF₃ ligands relative to that by multiple CO ligands may enhance the stability of some zerovalent metal trifluorophosphine complexes.

These observations on the higher stability of metal trifluorophosphine complexes relative to corresponding metal carbonyls suggested originally that metal trifluorophosphine chemistry might evolve into a more extensive area of inorganic chemistry than even metal carbonyl chemistry. However, as metal trifluorophosphine chemistry continued to develop, metal trifluorophosphine complexes with bridging PF₃ groups analogous to well-known metal carbonyls with bridging carbonyl groups (Figure 1) such as $Co_2(CO)_8$ { = $Co_2(CO)_6(\mu-CO)_2$ } [28, 29, 30, 31] and $Fe_2(CO)_9$ {= $Fe_2(CO)_6(\mu-CO)_3$ } [32, 33] remained unknown even though metal trifluorophosphine complexes with terminal PF₃ groups are generally more stable than their carbonyl counterparts.

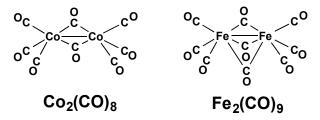
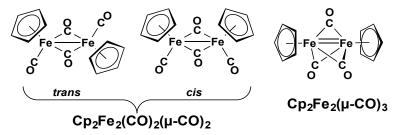



Figure 1. The bridged structures of Co₂(CO)₈ and Fe₂(CO)₉.

The cyclopentadienyliron carbonyl $Cp_2Fe_2(CO)_4$ is another example of a common metal carbonyl derivative containing two bridging CO groups. In fact, cis and trans isomers of $Cp_2Fe_2(CO)_2(\mu-CO)_2$ can be isolated separately and structurally characterized by X-ray crystallography (Figure 2) [34, 35, 36]. The doubly bridged Fe-Fe bonding distances in these structures are ~2.54 Å corresponding to formal single bonds. Again the analogous $Cp_2Fe_2(PF_3)_2(\mu-PF_3)_2$ with two bridging PF₃ groups remains unknown even though related CpFe species with terminal PF₃ groups such as CpFe(PF₃)₂H have been synthesized [37]. Another stable binuclear cyclopentadienyliron carbonyl is the triply bridged $Cp_2Fe_2(\mu-CO)_3$, which can be synthesized by photolysis of $Cp_2Fe_2(CO)_2(\mu-CO)_2$ at low temperatures. This species is of interest in being a stable organometallic triplet state molecule [38, 39, 40, 41]. Thus, the Fe=Fe formal double bond of length 2.265 Å in Cp₂Fe₂(µ-CO)₃ has two orthogonal single-electron orthogonal π "half-bond" components analogous to the O=O double bond in ordinary dioxygen thereby accounting for the triplet spin state of this molecule. An analogous $Cp_2Fe_2(PF_3)_3$ has not been synthesized.

Figure 2. The *trans* and *cis* isomers of the doubly bridged $Cp_2Fe_2(CO)_2(\mu-CO)_2$ [= $Cp_2Fe_2(CO)_4$] and the triply bridged $Cp_2Fe_2(\mu-CO)_3$ structure.

In order to gain some insight into the reasons for the lack of binuclear transition metal complexes having bridging PF_3 groups, we undertook a density functional theory study of trifluorophosphine analogues of binuclear metal carbonyls with bridging CO groups. We review here the highlights of our studies on the Co₂(PF₃)₈ [42], Fe₂(PF₃)₉ [43], and Cp₂Fe₂(PF₃)_{*n*} (*n*= 4, 3) [44] systems analogous to Co₂(CO)₈, Fe₂(CO)₉, and Cp₂Fe₂(CO)_{*n*}, respectively. Further details are provided in the individual cited articles.

RESULTS AND DISCUSSION

Optimization of $Co_2(PF_3)_8$ led only to the unbridged structure having a predicted Co–Co distance of ~2.77 Å (Figure 3). This Co–Co distance is somewhat longer than the experimental Co–Co distance of ~2.70 Å in an

analogous unbridged $(OC)_4Co-Co(CO)_4$ isomer stabilized in a C_{60} matrix [45] The lengthening of the unbridged Co-Co bond upon substituting all of the CO groups with PF₃ groups may be a consequence of the greater steric bulk of PF₃, thereby forcing the cobalt atoms to remain at a longer distance from each other. The doubly bridged $Co_2(CO)_6(\mu-CO)_2$ isomer has a shorter Co-Co distance of ~2.53 Å owing to a bond-shortening effect of the two bridging CO groups [46, 47, 48]. The bridged $Co_2(CO)_6(\mu-CO)_2$ and unbridged $Co_2(CO)_8$ isomers are shown to be in equilibrium in solution [49, 50, 51, 52, 53] and are calculated by density functional theory to have similar energies.

A bridging PF_3 group is a feature of the only $Co_2(PF_3)_9$ structure found in the density functional theory study (Figure 3). This structure may be regarded as a substitution product of PF_5 in which the two axial fluorine atoms have been replaced by $-Co(PF_3)_4$ units, i. e., one-half of the optimized $Co_2(PF_3)_8$ structure. However, $Co_2(PF_3)_9$ appears to be disfavored thermochemically with respect to exothermic PF_3 loss by ~10 kcal/mol to give $Co_2(PF_3)_8$. Thus $Co_2(PF_3)_9$ is not likely to be a viable species. A high-energy $Co_2(PF_3)_7$ structure is also found with a bridging PF_3 group between two $Co(PF_3)_3$ units without a Co-Co bond. However, this $Co_2(PF_3)_6(\mu-PF_3)$ structure lies ~60 kcal/mol in energy above the lowest energy $Co_2(PF_3)_7$ structure and thus does not appear to be a viable species.

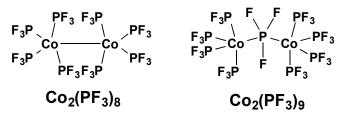
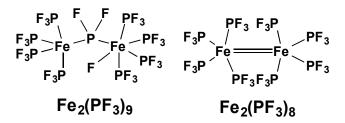
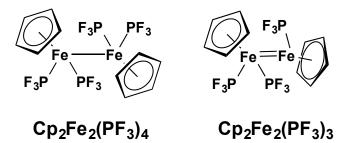


Figure 3. Structures of $Co_2(PF_3)_n$ (n = 8, 9).

The experimental Fe₂(CO)₉ structure is the triply bridged isomer Fe₂(CO)₆(μ -CO)₃[54, 55]. However, a singly bridged Fe₂(CO)₈(μ -CO) isomer is of comparable energy. An analogous singly bridged Os₂(CO)₈(μ -CO) structure is the experimental Os₂(CO)₉ structure. The lowest energy Fe₂(PF₃)₉ structure by ~28 kcal/mol (Figure 4) is related to the lowest-energy Co₂(PF₃)₉ structure (Figure 3) by migration of a fluorine atom from the bridging phosphorus atom to an iron atom leaving a bridging PF₂ group rather than a bridging PF₃ group. Formation of the Fe₂(PF₃)₈(F)(μ -PF₂) structure for Fe₂(PF₃)₉ can also be interpreted as insertion of an iron atom into a P–F bond of an initially bridging PF₃ ligand. The driving force for the splitting of the neutral PF₃ ligand into the anionic PF₂ and F ligands can relate to the reducing power of zerovalent iron.

Similar bridging PF₂ groups are found in the binuclear derivatives $M_2(PF_3)_6(\mu-PF_2)_2$ (M = Fe, Co [56]). These observations suggest that bridging PF₂ groups are more favorable than bridging PF₃ groups.




Figure 4. Lowest energy structures of $Fe_2(PF_3)_n$ (n = 8, 9)

The dissociation energy of $Fe_2(PF_3)_9$ to give $Fe_2(PF_3)_8 + PF_3$ is ~13 kcal/mol, which is significantly lower than CO dissociation from the stable binary metal carbonyls. Thus the experimental CO dissociation energies of Cr(CO)₆, Fe(CO)₅, and Ni(CO)₄ are 37, 41, and 27 kcal/mol, respectively [57]. More significantly, dissociation of Fe₂(PF₃)₉ into the mononuclear fragments $Fe(PF_3)_5 + Fe(PF_3)_4$ is essentially thermoneutral within ~1 kcal/mol suggesting that Fe₂(PF₃)₉ is not a viable species. However, the dissociation of Fe₂(PF₃)₈ into two Fe(PF₃)₄ fragments is clearly endothermic at ~25 kcal/mol. The optimized Fe₂(PF₃)₈ structure consists of two Fe(PF₃)₄ units linked solely by an Fe=Fe bond of length ~2.51 Å. This Fe=Fe distance is ~0.26 Å shorter than the Co-Co single bond in the likewise unbridged Co₂(PF₃)₈ structure (Figure 3). This supports the formulation of the Fe=Fe bond in Fe₂(PF₃)₈ as the formal double bond needed to give each iron atom the favored 18-electron configuration. The carbonyl Fe₂(CO)₈ analogous to Fe₂(PF₃)₈ has been detected spectroscopically in low-temperature matrices but is not viable not under normal conditions [58, 59, 60].

A density functional theory study on the Cp₂Fe₂(CO)₄ system shows the *cis* and *trans* isomers of the doubly bridged Cp₂Fe₂(CO)₂(μ -CO)₂ structure (Figure 2) to be the lowest energy structures consistent with the fact that both stereoisomers have been isolated and characterized structurally by X-ray crystallography. However, an unbridged Cp₂Fe₂(CO)₄ isomer was also found lying ~6 kcal/mol in energy above the doubly bridged Cp₂Fe₂(CO)₂(μ -CO)₂ isomers. The predicted Fe–Fe distance of ~2.73 Å in the unbridged Cp₂Fe₂(CO)₄ isomer is ~0.2 Å longer than that in the doubly bridged Cp₂Fe₂(CO)₂(μ -CO)₂ isomer. A density functional theory study on the Cp₂Fe₂(CO)₄ system using methods similar to those used earlier for the Cp₂Fe₂(CO)₄ system led to only unbridged *cis* and *trans* structures with no

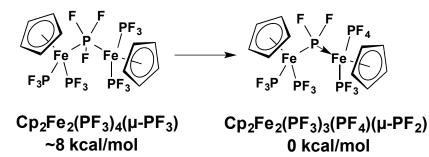
evidence for any low-energy Cp₂Fe₂(PF₃)₄ structures with bridging PF₃ groups. The less sterically hindered *trans*-Cp₂Fe₂(PF₃)₄ structure was found to lie ~5 kcal/mol in energy below its *cis* stereoisomer. The predicted Fe–Fe distances of ~2.98 Å and ~3.01 Å for *trans*- and *cis*-Cp₂Fe₂(PF₃)₄, respectively, are nearly 0.3 Å longer than that for the unbridged Cp₂Fe₂(CO)₄ isomer. This presumably is an effect of the greater bulk of the CpFe(PF₃)₂ halves of the Cp₂Fe₂(PF₃)₄ molecule as compared with the CpFe(CO)₂ halves of the unbridged Cp₂Fe₂(CO)₄ molecule.

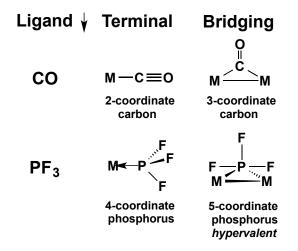
A density functional theory study on the Cp₂Fe₂(PF₃)₃ system also showed the only structures within ~11 kcal/mol of the lowest energy structure to be unbridged triplet and quintet spin state structures with two terminal PF₃ groups on one iron atom and a third terminal PF₃ group on the other iron atom. This is in stark contrast to the experimentally known triply bridged Cp₂Fe₂(μ -CO)₃ structure of the carbonyl analogue. The Fe=Fe distances in these unbridged Cp₂Fe₂(PF₃)₃ structures range from ~2.44 Å for a quintet spin state structure to 2.7 to 2.8 Å for the triplet spin state structures. All of these Fe=Fe distances are significantly less than the ~3.0 Å Fe–Fe single bond distances in the unbridged Cp₂Fe₂(PF₃)₄ structures thereby suggesting formal double bonds of various types.

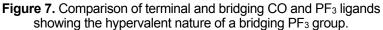
Figure 5. The lowest energy $Cp_2Fe_2(PF_3)_n$ (n = 4, 3) structures.

The pentacarbonyl Cp₂Fe₂(CO)₅ is not known and presumed not to be viable. Application of the 18-electron rule and assuming the nearly universal terminal pentahapto coordination of the Cp ligands require the absence of an iron-iron bond in Cp₂Fe₂(CO)₅. This means that a bridging CO group is the only way to hold the two iron atoms together in Cp₂Fe₂(CO)₅. However, the trifluorophosphine analogue Cp₂Fe₂(PF₃)₅ appears to be viable since loss of PF₃ to give Cp₂Fe₂(PF₃)₄ is endothermic at ~23 kcal/mol. Furthermore, a Cp₂Fe₂(PF₃)₄(µ-PF₃) structure with a bridging PF₃ group lies within ~8 kcal/mol of the lowest energy Cp₂Fe₂(PF₃)₅ isomer (Figure 6). However, the lowest energy Cp₂Fe₂(PF₃)₃(PF₄)(µ-PF₂) in which a

fluorine atom has migrated from the bridging PF₃ group to a terminal PF₃ group. The predicted exothermicity of this process indicates that bridging PF₂ groups with four-coordinate phosphorus atoms are more favorable than bridging PF₃ groups with five-coordinate phosphorus atoms. The terminal PF₄ group bonded to the iron atom is related to phosphorus pentafluoride by replacing one of the P–F bonds with a P–Fe bond. It is a net donor of one electron to the iron atom so both iron atoms in the Cp₂Fe₂(PF₃)₃(PF₄)(μ -PF₂) structure have the favored 18-electron configuration.




Figure 6. The exothermic conversion of $Cp_2Fe_2(PF_3)_4(\mu-PF_3)$ to $Cp_2Fe_2(PF_3)_3(PF_4)(\mu-PF_2)$ involving fluorine migration from a bridging PF_3 group to a terminal PF_3 group.


CONCLUSIONS

Density functional theory studies on the Co₂(PF₃)₈, Fe₂(PF₃)₉, and Cp₂Fe₂(PF₃)_n (Cp = η^{5} -C₅H₅; *n* = 4, 3) systems confirm the experimentally observed reluctance for the strong back-bonding PF₃ ligand to form binuclear metal complexes containing bridging PF₃ groups despite the fact that their carbonyl analogues contain two or three CO groups bridging a central metal-metal bond. Thus for Co₂(PF₃)₈ and Cp₂Fe₂(PF₃)_n (*n* = 4, 3) all of the low-energy structures are unbridged structures with the two parts held together only by metal-metal bonds. The lowest energy Fe₂(PF₃)₉ structure by a substantial margin is of the type Fe₂(PF₃)₈(F)(µ-PF₂) where one of the iron atoms has inserted into a P–F bond of one of the PF₃ ligands.

Bridging PF₃ groups without a central metal-metal bond are found in low-energy structures of the ligand-rich species $Co_2(PF_3)_9$ and $Cp_2Fe_2(PF_3)_5$. However, $Co_2(PF_3)_9$ is not likely to be a viable species since loss of one PF₃ ligand to give $Co_2(PF_3)_8$ is an exothermic process by ~10 kcal/mol. Furthermore the PF₃-bridged $Cp_2Fe_2(PF_3)_4(\mu-PF_3)$ is disfavored relative to migration of fluorine from the bridging PF₃ group to a terminal PF₃ group to give $Cp_2Fe_2(PF_3)_3(PF_4)(\mu-PF_2)$.

The reluctance of PF₃ to bridge two metal atoms compared with CO can be related to the coordination number of the donor atom. Thus terminal and bridging CO groups have dicoordinate and tricoordinate carbon atoms, respectively (Figure 7). Similarly, terminal and bridging PF₃ groups have tetracoordinate and pentacoordinate phosphorus atoms, respectively. Thus the phosphorus atom in a bridging PF₃ group has energetically less favorable hypervalent coordination, necessarily involving high-energy d orbitals or multicenter three-center four-electron bonding. In fact, the Co₂(PF₃)₈(μ -PF₃) and Cp₂Fe₂(PF₃)₄(μ -PF₃) having bridging PF₃ groups without metal-metal bonds may be regarded as substitution products of phosphorus pentafluoride, PF₅.

ACKNOWLEDGMENTS

I would like to dedicate this manuscript to Prof. Dr. Luminiţa Silaghi-Dumitrescu in recognition of her major contributions to Romanian chemistry as well as to many aspects of the research, teaching, and administration at Babeş-Bolyai University during her long career there. In addition her research activities in diverse areas of inorganic, organic, organometallic, and coordination chemistry have had considerable impact beyond the borders of Romania. On a more personal note, my wife (Jane) and I remember with pleasure both her visits to the University of Georgia (USA) as well as adventurous and interesting road trips with her in various parts of southeastern Europe previously unfamiliar to us. The latter include visits to Macedonia (Skopje and Lake Ohrid in 2011), Bulgaria (Sofia and Varna in 2013), and northern Greece (Delphi and Meteora in 2006).

REFERENCES

- 1. L. Mond, C. Langer, F. Quinncke, J. Chem. Soc. 1890, 57, 749.
- 2. J.W. Irvine, G. Wilkinson, Science, 1951, 113, 742.
- 3. J.C. Green, D.I. King, J.H.D. Eland, Chem. Comm., 1970, 17, 1121.
- I.H. Hillier, V.R. Saunders, M.J. Ware, P.J. Bassett, D.R. Lloyd, N.Lynaugh, Chem. Comm., 1970, 20, 1316.
- P.J. Bassett, B.R. Higginson, D.R. Lloyd, N. Lynaugh, P.J. Roberts, J. Chem. Soc. Dalton Trans. 1974, 21, 2316.
- 6. J. Müller, K. Fenderl, B. Mertschenk, Chem. Ber., 1971, 104, 700.
- R.A. Head, J.F. Nixon, G.J. Sharp, R.J. Clark, J. Chem. Soc. Dalton, 1975, 20, 2054.
- J.F. Nixon, E.A. Seddon, R.J. Suffolk, M.J. Taylor, J.C. Green, R.J. Clark, J. Chem. Soc. Dalton Trans. 1986, 4, 765.
- 9. J.-M. Savariault, A. Serafini, M. Pellissier, P. Cassoux, *Theor. Chim. Acta*, **1976**, 42, 155.
- 10. M. Braga, Inorg. Chem., **1985**, 24, 2702.
- 11. M. Braga, J. Mol Struct. Theochem, 1992, 253, 167.
- G. Frenking, K. Wichmann, N. Fröhlich, J. Grobe, W. Golla, D. Le Van, B. Krebs, M. Läge, M. Organometallics, 2002, 21, 2921.
- 13. J.C. Green, D.I. King, J.H.D. Eland, Chem. Comm. 1970, 1121.
- 14. Hiller, I.H.; Saunders, V.R.; Ware, M.J.; Bassett, P.J.; Lloyd, D.R.; Lynaugh, N. *Chem. Comm.* **1970**, 1316.
- Bassett, P.J.; Higginson, B.R.; Lloyd, D.R.; Lynaugh, N.; Roberts, P.J. J. Chem. Soc. Dalton 1974, 2316.
- 16. Müller, J.; Fenderl, K.; Mertschenk, B. Chem. Ber. 1971, 104, 700.
- 17. Head, R.A.; Nixon, J.F.; Sharp, G.J.; Clark, R. J. J. Chem. Soc. Dalton 1975, 2054.
- 18. Nixon, J.F.; Seddon, E.A.; Suffolk, R.J.; Taylor, M.J.; Green, J.C.; Clark, R. J. *J. Chem. Soc. Dalton* **1986**, 765.
- 19. Savariault, J.-M.; Serafini, A.; Pellissier, M.; Cassoux, P. Theor. Chim. Acta 1976, 42, 155.
- 20. Braga, M. Inorg. Chem. 1985, 24, 2702.
- 21. Braga, M. J. Mol Struct. 1992, 85, 167.
- Frenking, G.; Wichmann, K.; Fröhlich, N.; Grobe, J.; Golla, W.; Le Van, D.; Krebs, B.; Läge, M. Organometallics 2002, 21, 2921.
- 23. Bennett, M.A.; Johnson, R.N.; Turney, T.W. Inorg. Chem. 1976, 15, 2938.
- 24. Kruck, T.; Baur, K. Angew. Chem. 1965, 77, 505.
- 25. Kruck, T.; Baur, K.Z. anorg. allgem. Chem. 1969, 364, 192.
- 26. Drews, T.; Rusch, D.; Seidel, S.; Willemsen, S.; Seppelt, K. Chem. Eur. J. 2008, 14, 4280.
- Hammill, C.L.; Clark, R.J.; Ross, C.W.; Marshall, A.G.; Schmutz, J. Inorg. Chem. 1997, 26, 5973.
- 28. Sumner, G.G.; Klug, H.P.; Alexander, L.E. Acta Cryst. 1964, 17, 732.
- 29. Leung, P.C.; Coppens, P. Acta Cryst. 1983, B39, 535.

- Braga, D.; Grepioni, F.; Sabatino, P.; Gavezzotti, A. J. Chem. Soc. Dalton Trans. 1992, 1185.
- 31. Wei, C.H.; Dahl, L.F. J. Am. Chem. Soc., 88, 1821 (1966).
- 32. Powell, H.M.; Ewens, R.V.G. J. Chem. Soc. 1939, 286.
- 33. Cotton, F.A.; Troup, J.M. J. Chem. Soc. Dalton 1974, 800.
- 34. Mills, O. S. Acta Cryst. 1958, 11, 620.
- 35. Bryan, R.F.; Greene, P.T. J. Chem. Soc. A 1970, 3068.
- 36. Mitschler, A.; Rees, B.; Lehmann, M.S. J. Am. Chem. Soc. 1978, 100, 3390.
- 37. Kruck, T., Knoll, L. Chem. Ber. 1972, 105, 3783.
- 38. Caspar, J.V.; Meyer, T.J. J. Am. Chem. Soc. 1980, 102, 7794.
- 39. Hooker, R.H.; Mahmoud, K.A.; Rest, A. J. Chem. Commun. 1983, 1022.
- 40. Hepp, A.F.; Blaha, J.P.; Lewis, C.; Wrighton, M.S. Organometallics 1984, 3, 174.
- 41. Blaha, J.P.; Bursten, B.E.; Dewan, J.C.; Frankel, R.B.; Randolph, C.L.; Wilson, B.A.; Wrighton, M. S. *J. Am. Chem. Soc.* **1985**, *1076*, 4561.
- 42. Yang, H.-q.; Li, Q.-s.; Xie, Y.; King, R.B.; Schaefer, H.F. *Mol. Phys.* **2010**, *108*, 2477.
- 43. Zou, R.; Li, Q.-s.; Xie, Y.; King, R.B.; Schaefer, H.F. *Chem. Eur. J.* **2008**, *14*, 11149.
- S. Gong, Q. Luo, Q.-s. Li, Y. Xie, R.B. King, H.F. Schaefer, *New J. Chem.*, 2015, 39, 3708.
- 45. T.Y. Garcia, J.C. Fettinger, M.M. Olmstead, A.L. Balch, Chem. Comm., 2009 7143.
- 46. G.G. Sumner, H.P. Klug, L.E. Alexander, Acta Cryst., 1964, 17 732.
- 47. P.C. Leung, P. Coppens Acta Cryst., B 1983, 39, 535.
- D. Braga, F. Grepioni, P. Sabatino, A. Gavezzotti, J. Chem. Soc. Dalton Trans. 1992, 1185.
- 49. K. Noack, Spectrochim. Acta, 1963, 19, 1925.
- 50. K. Noack, Helv. Chim. Acta, 1964, 47, 1064.
- 51. K. Noack, Helv. Chim. Acta, 1964, 47, 1554.
- 52. G. Bor, Spectrochim. Acta, 1963, 14, 1209.
- 53. G. Bor, Spectrochim. Acta, 1963, 14, 2065.
- 54. Powell, H.M.; Ewens, R.V.G. J. Chem. Soc. 1939, 286.
- 55. Cotton, F.A.; Troup, J.M. J. Chem. Soc. Dalton 1974, 800.
- 56. Kruck, T.; Lang, W. Angew. Chem. Int. Ed. 1967, 6, 454.
- 57. L.S. Sunderlin, D. Wang, and R.R. Squires, J. Am. Chem. Soc. 1993, 115, 12060.
- 58. Poliakoff, M.; Turner, J.J. J. Chem. Soc. A, 1971, 2403.
- 59. Fletcher, S.C.; Poliakoff, M.; Turner J. J. Inorg. Chem. 1986, 25, 3597.
- 60. Fedrigo, S.; Haslett, T.L.; Moskovits, M. J. Am. Chem. Soc. 1996, 118, 5083.